Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biosci ; 11(1): 202, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34879865

RESUMO

BACKGROUND: The ongoing COVID-19 pandemic has resulted in 185 million recorded cases and over 4 million deaths worldwide. Several COVID-19 vaccines have been approved for emergency use in humans and are being used in many countries. However, all the approved vaccines are administered by intramuscular injection and this may not prevent upper airway infection or viral transmission. RESULTS: Here, we describe a novel, intranasally delivered COVID-19 vaccine based on a helper-dependent adenoviral (HD-Ad) vector. The vaccine (HD-Ad_RBD) produces a soluble secreted form of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein and we show it induced robust mucosal and systemic immunity. Moreover, intranasal immunization of K18-hACE2 mice with HD-Ad_RBD using a prime-boost regimen, resulted in complete protection of the upper respiratory tract against SARS-CoV-2 infection. CONCLUSION: Our approaches provide a powerful platform for constructing highly effective vaccines targeting SARS-CoV-2 and its emerging variants.

2.
Eur Respir J ; 56(5)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32457197

RESUMO

Cystic fibrosis (CF) is a genetic disorder affecting multiple organs, including the pancreas, hepatobiliary system and reproductive organs; however, lung disease is responsible for the majority of morbidity and mortality. Management of CF involves CF transmembrane conductance regulator (CFTR) modulator agents including corrector drugs to augment cellular trafficking of mutant CFTR as well as potentiators that open defective CFTR channels. These therapies are poised to help most individuals with CF, with the notable exception of individuals with class I mutations where full-length CFTR protein is not produced. For these mutations, gene replacement has been suggested as a potential solution.In this work, we used a helper-dependent adenoviral vector (HD-CFTR) to express CFTR in nasal epithelial cell cultures derived from CF subjects with class I CFTR mutations.CFTR function was significantly restored in CF cells by HD-CFTR and reached healthy control functional levels as detected by Ussing chamber and membrane potential (FLIPR) assay. A dose-response relationship was observed between the amount of vector used and subsequent functional outcomes; small amounts of HD-CFTR were sufficient to correct CFTR function. At higher doses, HD-CFTR did not increase CFTR function in healthy control cells above baseline values. This latter observation allowed us to use this vector to benchmark in vitro efficacy testing of CFTR-modulator drugs.In summary, we demonstrate the potential for HD-CFTR to inform in vitro testing and to restore CFTR function to healthy control levels in airway cells with class I or CFTR nonsense mutations.


Assuntos
Fibrose Cística , Fibrose Cística/genética , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais , Terapia Genética , Humanos , Mutação
3.
Hum Gene Ther ; 30(9): 1101-1116, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31099266

RESUMO

Early efforts in cystic fibrosis (CF) gene therapy faced major challenges in delivery efficiency and sustained therapeutic gene expression. Recent advancements in engineered site-specific endonucleases such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 make permanent CF transmembrane conductance regulator (CFTR) gene correction possible. However, because of safety concerns of the CRISPR/Cas9 system and challenges in in vivo delivery to inflamed CF airway, CRISPR-based gene correction strategies need to be tested in proper animal models. In this study, we aimed at creating vectors for testing CFTR gene correction in pig models. We constructed helper-dependent adenoviral (HD-Ad) vectors to deliver CRISPR/Cas9 and a donor template (a 6 kb LacZ or 8.7 kb human CFTR expression cassette) into cultured pig cells. We demonstrated precise integration of each donor into the GGTA1 safe harbor through Cas9-induced homology directed repair with 3 kb homology arms. In addition, we showed that both LacZ and hCFTR were persistently expressed in transduced cells. Furthermore, we created a CFTR-deficient cell line for testing CFTR correction. We detected hCFTR mRNA and protein expression in cells transduced with the hCFTR vector. We also demonstrated CFTR function in the CF cells transduced with the HD-Ad delivering the CRISPR-Cas9 system and hCFTR donor at late cellular passages using the membrane potential sensitive dye-based assay (FLIPR®). Combined with our previous report on gene delivery to pig airway basal cells, these data provide the feasibility of testing CRISPR/Cas9-mediated permanent human CFTR correction through HD-Ad vector delivery in pigs.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Edição de Genes , Animais , Linhagem Celular , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Galactosiltransferases/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Marcação de Genes , Técnicas de Transferência de Genes , Genes Reporter , Loci Gênicos , Terapia Genética , Vetores Genéticos/genética , Modelos Biológicos , Mutagênese Insercional , Suínos , Transdução Genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...