Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 3): 127922, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944732

RESUMO

Major depressive disorder (MDD) is a highly prevalent condition and one of the most common psychiatric disorders worldwide. Circular RNA (circRNA) has been increasingly implicated in MDD. However, a comprehensive understanding of circRNA and microglial apoptosis in depression is incomplete. Here, we show that circDYM inhibits microglial apoptosis induced by LPS via CEBPB/ZC3H4 axis. CircDYM prevents the translocation of CEBPB from cytoplasm to the nucleus by binding with CEBPB. Moreover, LPS-induced CEBPB nuclear entry downregulates the expression of ZC3H4, in which promotes autophagy and apoptosis in microglia. Taken together, our findings provide new insights into the relationship between circDYM and microglial apoptosis and shed new light on the function of this novel mechanism in depression-associated complex changes in the brain.


Assuntos
Transtorno Depressivo Maior , Microglia , Humanos , Camundongos , Animais , Microglia/metabolismo , Transdução de Sinais , Lipopolissacarídeos/farmacologia , Depressão , Transtorno Depressivo Maior/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Apoptose , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo
2.
Cell Mol Biol Lett ; 28(1): 62, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525118

RESUMO

BACKGROUND: Bladder cancer (BLCA) is a malignancy that frequently metastasizes and leads to poor patient prognosis. It is essential to understand the molecular mechanisms underlying the progression and metastasis of BLCA and identify potential biomarkers. METHODS: The expression of peptidase inhibitor 16 (PI16) was analysed using quantitative PCR, immunoblotting and immunohistochemistry assays. The functional roles of PI16 were evaluated using wound healing, transwell, and human umbilical vein endothelial cell tube formation assays, as well as in vivo tumour models. The effects of PI16 on nuclear factor κB (NF-κB) signalling activation were examined using luciferase reporter gene systems, immunoblotting and immunofluorescence assays. Co-immunoprecipitation was used to investigate the interaction of PI16 with annexin-A1 (ANXA1) and NEMO. RESULTS: PI16 expression was downregulated in bladder cancer tissues, and lower PI16 levels correlated with disease progression and poor survival in patients with BLCA. Overexpressing PI16 inhibited BLCA cell growth, motility, invasion and angiogenesis in vitro and in vivo, while silencing PI16 had the opposite effects. Mechanistically, PI16 inhibited the activation of the NF-κB pathway by interacting with ANXA1, which inhibited K63 and M1 ubiquitination of NEMO. CONCLUSIONS: These results indicate that PI16 functions as a tumour suppressor in BLCA by inhibiting tumour growth and metastasis. Additionally, PI16 may serve as a potential biomarker for metastatic BLCA.


Assuntos
NF-kappa B , Neoplasias da Bexiga Urinária , Humanos , NF-kappa B/metabolismo , Inibidores de Proteases , Transdução de Sinais , Ubiquitinação , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Linhagem Celular Tumoral , Proteínas de Transporte/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo
3.
Biochem Pharmacol ; 213: 115631, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37257722

RESUMO

AIMS: Abdominal aortic aneurysm (AAA) is a common, usually asymptomatic disease with high mortality and limited therapeutic options. Extensive extracellular matrix (ECM) fragmentation and transmural inflammation act as major pathological processes of AAA. However, the underlying regulatory mechanisms remain incompletely understood. Herein, we aimed to investigate the role of scavenger receptor A1 (SR-A1), a key pattern recognition receptor modulating macrophage activity, in pathogenesis of AAA. METHODS AND RESULTS: The AAA model was generated by administration of angiotensin II (Ang II) into apolipoprotein E knockout mice or peri-arterial application of calcium phosphate in C57BJ/6L mice. We found that SR-A1 was markedly down-regulated in the macrophages isolated from murine AAA aortas. Global or myeloid-specific ablation of SR-A1 aggravated vascular inflammation, loss of vascular smooth muscle cells and degradation of the extracellular matrix. These effects of SR-A1 deficiency on AAA development were mediated by suppressed immunoresponsive gene 1 (IRG1) and increased inflammatory response in macrophages. Mechanically, binding of SR-A1 with Lyn led to STAT3 phosphorylation and translocation into the nucleus, in which STAT3 promoted IRG1 transcription through directly binding to its promoter. Restoration of macrophage SR-A1 in SR-A1-deficient mice by bone marrow transplantation or administration of 4-octyl itaconate, the derivate of IRG1 product itaconate, could relieve murine AAA. CONCLUSION: Our study reveals a protective effect of macrophage SR-A1-STAT3-IRG1 axis against aortic aneurysm formation via inhibiting inflammation.


Assuntos
Aneurisma da Aorta Abdominal , Animais , Camundongos , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Inflamação/metabolismo , Macrófagos , Camundongos Knockout , Receptores Depuradores/metabolismo , Modelos Animais de Doenças , Angiotensina II/metabolismo , Camundongos Endogâmicos C57BL , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia
4.
Nat Commun ; 14(1): 489, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717587

RESUMO

Vascular repair is considered a key restorative measure to improve long-term outcomes after ischemic stroke. N6-methyladenosine (m6A), the most prevalent internal modification in eukaryotic mRNAs, functionally mediates vascular repair. However, whether circular RNA SCMH1 (circSCMH1) promotes vascular repair by m6A methylation after stroke remains to be elucidated. Here, we identify the role of circSCMH1 in promoting vascular repair in peri-infarct cortex of male mice and male monkeys after photothrombotic (PT) stroke, and attenuating the ischemia-induced m6A methylation in peri-infarct cortex of male mice after PT stroke. Mechanically, circSCMH1 increased the translocation of ubiquitination-modified fat mass and obesity-associated protein (FTO) into nucleus of endothelial cells (ECs), leading to m6A demethylation of phospholipid phosphatase 3 (Plpp3) mRNA and subsequently the increase of Plpp3 expression in ECs. Our data demonstrate that circSCMH1 enhances vascular repair via FTO-regulated m6A methylation after stroke, providing insights into the mechanism of circSCMH1 in promoting stroke recovery.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Fosfatidato Fosfatase , RNA Circular , Acidente Vascular Cerebral , Animais , Masculino , Camundongos , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Células Endoteliais/metabolismo , Infarto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/terapia , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo
5.
Oncogene ; 41(49): 5253-5265, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36316443

RESUMO

Glioma is the most common malignant primary brain tumor with aggressiveness and poor prognosis. Although extracellular vesicles (EVs)-based cell-to-cell communication mediates glioma progression, the key molecular mediators of this process are still not fully understood. Herein, we elucidated an EVs-mediated transfer of suprabasin (SBSN), leading to the aggressiveness and progression of glioma. High levels of SBSN were positively correlated with clinical grade, predicting poor clinical prognosis of patients. Upregulation of SBSN promoted, while silencing of SBSN suppressed tumorigenesis and aggressiveness of glioma cells in vivo. EVs-mediated transfer of SBSN resulted in an increase in SBSN levels, which promoted the aggressiveness of glioma cells by enhancing migration, invasion, and angiogenesis of recipient glioma cells. Mechanistically, SBSN activated NF-κB signaling by interacting with annexin A1, which further induced Lys63-linked and Met1-linear polyubiquitination of NF-κB essential modulator (NEMO). In conclusion, the communication of SBSN-containing EVs within glioma cells drives the formation and development of tumors by activating NF-κB pathway, which may provide potential therapeutic target for clinical intervention in glioma.


Assuntos
Vesículas Extracelulares , Glioma , Humanos , Antígenos de Diferenciação/metabolismo , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Glioma/patologia , Proteínas de Neoplasias/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Ubiquitinação
6.
Br J Cancer ; 127(2): 211-222, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35484216

RESUMO

BACKGROUND: Patients with metastatic bladder cancer have very poor prognosis and predictive biomarkers are urgently needed for early clinical detection and intervention. In this study, we evaluate the effect and mechanism of Suprabasin (SBSN) on bladder cancer metastasis. METHODS: A tissue array was used to detect SBSN expression by immunohistochemistry. A tumour-bearing mouse model was used for metastasis evaluation in vivo. Transwell and wound-healing assays were used for in vitro evaluation of migration and invasion. Comprehensive molecular screening was achieved by western blotting, immunofluorescence, luciferase reporter assay, and ELISA. RESULTS: SBSN was found markedly overexpressed in bladder cancer, and indicated poor prognosis of patients. SBSN promoted invasion and metastasis of bladder cancer cells both in vivo and in vitro. The secreted SBSN exhibited identical biological function and regulation in bladder cancer metastasis, and the interaction of secreted SBSN and EGFR could play an essential role in activating the signalling in which SBSN enhanced the phosphorylation of EGFR and SRC kinase, followed with phosphorylation and nuclear location of STAT3. CONCLUSIONS: Our findings highlight that SBSN, and secreted SBSN, promote bladder cancer metastasis through activation of EGFR/SRC/STAT3 pathway and identify SBSN as a potential diagnostic and therapeutic target for bladder cancer.


Assuntos
Antígenos de Diferenciação/metabolismo , Neoplasias da Bexiga Urinária , Animais , Linhagem Celular Tumoral , Movimento Celular , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos , Metástase Neoplásica , Prognóstico , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/patologia , Quinases da Família src/metabolismo
7.
Cell Biosci ; 11(1): 62, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33781347

RESUMO

BACKGROUND: Astrocytes participate in innate inflammatory responses within the mammalian central nervous system (CNS). HECT domain E3 ubiquitin protein ligase 1 (HECTD1) functions during microglial activation, suggesting a connection with neuroinflammation. However, the potential role of HECTD1 in astrocytes remains largely unknown. RESULTS: Here, we demonstrated that HECTD1 was upregulated in primary mouse astrocytes after 100 ng/ml lipopolysaccharide (LPS) treatment. Genetic knockdown of HECTD1 in vitro or astrocyte-specific knockdown of HECTD1 in vivo suppressed LPS-induced astrocyte activation, whereas overexpression of HECTD1 in vitro facilitated LPS-induced astrocyte activation. Mechanistically, we established that LPS activated σ-1R-JNK/p38 pathway, and σ-1R antagonist BD1047, JNK inhibitor SP600125, or p38 inhibitor SB203580 reversed LPS-induced expression of HECTD1, thus restored LPS-induced astrocyte activation. In addition, FOXJ2 functioned as a transcription factor of HECTD1, and pretreatment of primary mouse astrocytes with BD1047, SB203580, and SP600125 significantly inhibited LPS-mediated translocation of FOXJ2 into the nucleus. CONCLUSIONS: Overall, our present findings suggest that HECTD1 participates in LPS-induced astrocyte activation by activation of σ-1R-JNK/p38-FOXJ2 pathway and provide a potential therapeutic strategy for neuroinflammation induced by LPS or any other neuroinflammatory disorders.

8.
Cell Death Dis ; 11(7): 547, 2020 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-32683421

RESUMO

HER2+ breast cancer (BC) is characterized by rapid growth, early recurrence, early metastasis, and chemoresistance. Trastuzumab is the most effective treatment for HER2+ BC and effectively reduces the risk of recurrence and death of patients. Resistance to trastuzumab results in cancer recurrence and metastasis, leading to poor prognosis of HER2+ BC. In the present study, we found that non-structural maintenance of chromosome condensin 1 complex subunit G (NCAPG) expression was highly upregulated in trastuzumab-resistant HER2+ BC. Ectopic NCAPG was positively correlated with tumor relapse and shorter survival in HER2+ BC patients. Moreover, overexpression of NCAPG promoted, while silencing of NCAPG reduced, the proliferative and anti-apoptotic capacity of HER2+ BC cells both in vitro and in vivo, indicating NCAPG reduces the sensitivity of HER2+ BC cells to trastuzumab and may confer trastuzumab resistance. Furthermore, our results suggest that NCAPG triggers a series of biological cascades by phosphorylating SRC and enhancing nuclear localization and activation of STAT3. To summarize, our study explores a crucial role for NCAPG in trastuzumab resistance and its underlying mechanisms in HER2+ BC, and suggests that NCAPG could be both a potential prognostic marker as well as a therapeutic target to effectively overcome trastuzumab resistance.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptor ErbB-2/metabolismo , Fator de Transcrição STAT3/metabolismo , Trastuzumab/uso terapêutico , Quinases da Família src/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Trastuzumab/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
9.
Theranostics ; 10(1): 17-35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903103

RESUMO

Approximately 10% of bone fractures do not heal satisfactorily, leading to significant clinical and socioeconomic implications. Recently, the role of macrophages in regulating bone marrow stem cell (BMSC) differentiation through the osteogenic pathway during fracture healing has attracted much attention. Methods: The tibial monocortical defect model was employed to determine the critical role of macrophage scavenger receptor 1 (MSR1) during intramembranous ossification (IO) in vivo. The potential functions and mechanisms of MSR1 were explored in a co-culture system of bone marrow-derived macrophages (BMDMs), RAW264.7 cells, and BMSCs using qPCR, Western blotting, immunofluorescence, and RNA sequencing. Results: In this study, using the tibial monocortical defect model, we observed delayed IO in MSR1 knockout (KO) mice compared to MSR1 wild-type (WT) mice. Furthermore, macrophage MSR1 mediated PI3K/AKT/GSK3ß/ß-catenin signaling increased ability to promote osteogenic differentiation of BMSCs in the co-culture system. We also identified proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) as the target gene for macrophage MSR1-activated PI3K/AKT/GSK3ß/ß-catenin pathway in the co-culture system that facilitated M2-like polarization by enhancing mitochondrial oxidative phosphorylation. Conclusion: Our findings revealed a previously unrecognized function of MSR1 in macrophages during fracture repair. Targeting MSR1 might, therefore, be a new therapeutic strategy for fracture repair.


Assuntos
Macrófagos/metabolismo , Células-Tronco Mesenquimais/citologia , Osteogênese , Receptores Depuradores Classe A/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Macrófagos/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , beta Catenina/metabolismo
10.
Cell Death Dis ; 10(10): 719, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558697

RESUMO

The ubiquitin-proteasome system (UPS) is a tight homeostatic control mechanism of intracellular protein degradation and turnover involved in many human diseases. Proteasome inhibitors were initially developed as anticancer agents with potential benefits in the suppression of tumor growth. However, clinical trials of patients with solid tumors fail to demonstrate the same efficacy of these proteasome inhibitors. Here, we show that Parkin, an E3 ubiquitin ligase, is implicated in tumorigenesis and therapy resistance of hepatocellular carcinoma (HCC), the most common type of primary liver cancer in adults. Lower Parkin expression correlates with poor survival in patients with HCC. Ectopic Parkin expression enhances proteasome inhibitor-induced apoptosis and tumor suppression in HCC cells in vitro and in vivo. In contrast, knockdown of Parkin expression promotes apoptosis resistance and tumor growth. Mechanistically, Parkin promotes TNF receptor-associated factor (TRAF) 2 and TRAF6 degradation and thus facilitates nuclear factor-kappa-B (NF-κB) inhibition, which finally results in apoptosis. These findings reveal a direct molecular link between Parkin and protein degradation in the control of the NF-κB pathway and may provide a novel UPS-dependent strategy for the treatment of HCC by induction of apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , NF-kappa B/antagonistas & inibidores , Inibidores de Proteassoma/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/genética , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Bases de Dados Genéticas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Análise Serial de Tecidos , Transplante Heterólogo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
11.
Biochem Pharmacol ; 168: 392-403, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31381873

RESUMO

Macrophage class A1 scavenger receptor (SR-A1) is a pattern recognition receptor with an anti-inflammatory feature in cardiovascular diseases. However, its role in acute aortic dissection (AD) is not known yet. Using an aortic dissection model in SR-A1-deficient mice and their wild type littermates, we found that SR-A1 deficiency aggravated beta-aminopropionitrile monofumarate induced thoracic aortic dilation, false lumen formation, extracellular matrix degradation, vascular inflammation and accumulation of apoptotic cells. These pathological changes were associated with an impaired macrophage efferocytosis mediated by tyrosine-protein kinase receptor Tyro3 in vitro and in vivo. SR-A1 could directly interact with Tyro3 and was required for Tyro3 phosphorylation to activate its downstream PI3K/Akt signaling pathway. Importantly, co-culture of SR-A1-/- macrophages with apoptotic Jurkat cells resulted in less devoured apoptotic cells accompanied by swelling mitochondria and damaged ATP generation, following poor IL-10 and robust TNF-α production. Deficiency of SR-A1 did not influence phagolysosome formation during the efferocytosis. Lentiviral overexpression of Tyro3 in SR-A1-/- macrophages induced restorative phagocytosis in vitro. Administration of Tyro3 agonist protein S could restore SR-A1-/- macrophages phagocytosis in vitro and in vivo. These findings suggest that SR-A1-Tyro3 axis in macrophages mitigate AD damage by promoting efferocytosis and inhibiting inflammation.


Assuntos
Macrófagos/metabolismo , Receptores Depuradores Classe A/metabolismo , Aminopropionitrilo/análogos & derivados , Aminopropionitrilo/farmacologia , Dissecção Aórtica , Animais , Apoptose , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Inflamação , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Depuradores Classe A/genética , Estaurosporina/farmacologia
12.
EBioMedicine ; 43: 188-200, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30979686

RESUMO

BACKGROUND: It is well-established that activation of nuclear factor-kappa B (NF-κB) signaling plays important roles in cancer development and progression. However, the underlying mechanism by which the NF-κB pathway is constitutively activated in cancer remains largely unclear. The present study aimed to investigate the effect of PICALM interacting mitotic regulator (PIMREG) on sustaining NF-κB activation in breast cancer. METHODS: The underlying mechanisms in which PIMREG-mediated NF-κB constitutive activation were determined via immunoprecipitation, EMSA and luciferase reporter assays. The expression of PIMREG was examined by quantitative PCR and western blotting analyses and immunohistochemical assay. The effect of PIMREG on aggressiveness of breast cancer cell was measured using MTT, soft agar clonogenic assay, wound healing and transwell matrix penetration assays in vitro and a Xenografted tumor model in vivo. FINDINGS: PIMREG competitively interacted with the REL homology domain (RHD) of NF-κB with IκBα, and sustained NF-κB activation by promotion of nuclear accumulation and transcriptional activity of NF-κB via disrupting the NF-κB/IκBα negative feedback loop. PIMREG overexpression significantly enhanced NF-κB transactivity and promoted the breast cancer aggressiveness. The expression of PIMREG was markedly upregulated in breast cancer and positively correlated with clinical characteristics of patients with breast cancer, including the clinical stage, tumor-node-metastasis classification and poorer survival. INTERPRETATION: PIMREG promotes breast cancer aggressiveness via disrupting the NF-κB/IκBα negative feedback loop, which suggests that PIMREG might be a valuable prognostic factor and potential target for diagnosis and therapy of metastatic breast cancer. FUND: The science foundation of China, Guangdong Province, Guangzhou Education System, and the Science and Technology Program of Guangzhou.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Transdução de Sinais , Animais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Células Epiteliais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Theranostics ; 9(2): 449-465, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809286

RESUMO

The Wnt/ß-catenin pathway is constitutively active and promotes multiple tumor processes, including breast cancer metastasis. However, the underlying mechanism by which the Wnt/ß-catenin pathway is constitutively activated in breast cancer metastasis remains unclear. Inhibition of Wnt antagonists is important for Wnt/ß-catenin signaling activation, and post-transcriptional regulation of these antagonists by microRNAs (miRNAs) might be a possible mechanism underlying signaling activation. Regulation of nuclear pre-mRNA domain-containing 1A (RPRD1A) is a known inhibitor of cell growth and Wnt/ß-catenin signaling activity, but the function and regulatory mechanism of RPRD1A in breast cancer have not been clarified. The aim of this study was to understand how regulators of the Wnt/ß-catenin pathway may play a role in the metastasis of this cancer. Methods: RPRD1A expression and its association with multiple clinicopathological characteristics was analyzed immunohistochemically in human breast cancer specimens. miR-454-3p expression was analyzed using real-time PCR. RPRD1A or miR-454-3p knockdown and overexpression were used to determine the underlying mechanism of their functions in breast cancer cells. Xenografted tumor model, 3D invasive culture, cell migration and invasion assays and sphere formation assay were used to determine the biofunction of RPRD1A and miR-454-3p in breast cancer. Electrophoretic mobility shift assay (EMSA), luciferase reporter assay, and RNA immunoprecipitation (RIP) were performed to study the regulation and underlying mechanisms of RPRD1A and miR-454-3p expression and their correlation with the Wnt/ß-catenin pathway in breast cancer. Results: The Wnt/ß-catenin signaling antagonist RPRD1A was downregulated and its upstream regulator miR-454-3p was amplified and overexpressed in metastatic breast cancer, and both were correlated with overall and relapse-free survival in breast cancer patients. The suppression by miR-454-3p on RPRD1A was found to activate Wnt/ß-catenin signaling, thereby promoting metastasis. Simultaneously, three other negative regulators of the Wnt/ß-catenin pathway, namely, AXIN2, dickkopf WNT signaling pathway inhibitor (DKK) 3 and secreted frizzled related protein (SFRP) 1, were also found to be targets of miR-454-3p and were involved in the signaling activation. miR-454-3p was found to be involved in early metastatic processes and to promote the stemness of breast cancer cells and early relapse under both in vitro and in vivo conditions. Conclusions: The findings indicate that miR-454-3p-mediated suppression of Wnt/ß-catenin antagonist RPRD1A, as well as AXIN2, DKK3 and SFRP1, sustains the constitutive activation of Wnt/ß-catenin signaling; thus, miR-454-3p and RPRD1A might be potential diagnostic and therapeutic targets for breast cancer metastasis.


Assuntos
Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/análise , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Metástase Neoplásica/patologia , Proteínas Repressoras/análise , Via de Sinalização Wnt , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteína Axina/análise , Quimiocinas/análise , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/análise , Proteínas de Membrana/análise , Modelos Teóricos , Transplante de Neoplasias , Reação em Cadeia da Polimerase em Tempo Real , Transplante Heterólogo
14.
Mol Ther Nucleic Acids ; 13: 189-197, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30292140

RESUMO

Ischemia-reperfusion (I/R) injury is a major side effect of the reperfusion treatment of the ischemic heart. Few therapies are available for the effective prevention of this injury caused by the oxidative stress-induced cardiomyocyte apoptosis. Metformin was shown to have a potential cardiac protective effect and ability to reduce cardiac events, but the exact mechanism remains unclear. Here, we aimed to confirm and investigate the mechanisms underlying potential metformin activity against I/R injury in response to oxidative stress. We determined that the expression of miR-1a-3p was significantly increased in neonatal rat ventricular cells (NRVCs), which were exposed to H2O2in vitro and in the hearts of mice that underwent the I/R injury. MiR-1a-3p was shown to target the 3' UTR of GRP94, which results in the accumulation of un- or misfolded proteins, leading to the endoplasmic reticulum (ER) stress. The obtained results demonstrated that C/EBP ß directly induces the upregulation of miR-1a-3p by binding to its promoter. Furthermore, as a direct allosteric AMPK activator, metformin was shown to activate AMPK and significantly reduce C/EBP ß and miR-1a-3p levels compared with those in the control group. In conclusion, metformin protects cardiomyocytes against H2O2 damage through the AMPK/C/EBP ß/miR-1a-3p/GRP94 pathway, which indicates that metformin may be applied for the treatment of I/R injury.

15.
Oncol Rep ; 36(5): 2715-2722, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27571925

RESUMO

Heme metabolism system is involved in microRNA (miRNA) biogenesis. The complicated interplay between heme oxygenase-1 (HO-1) and miRNA has been observed in various tissues and diseases, including human malignancy. In the present study, our data showed that stable HO-1 overexpression in hepatocellular carcinoma (HCC) cells downregulated several oncomiRs. The most stably downregulated are miR-30d and miR-107. Iron, one of HO-1 catalytic products, was an important mediator in this regulation. Cell function analysis demonstrated that HO-1 inhibited the proliferation and metastasis of HepG2 cells, whereas miR-30d/miR-107 improved the proliferative and migratory ability of HepG2 cells. The beneficial effect of HO-1 in HCC inhibition could be reversed by upregulating miR-30d and miR-107. Akt and ERK pathways may be involved in the regulation of HO-1/miR-30d/miR-107 in HCC. These data indicate that HO-1 significantly suppresses HCC progression by regulating the miR-30d/miR-107 level, suggesting miR-30d/miR-107 regulation as a new molecular mechanism of HO-1 anticancer effect.


Assuntos
Carcinoma Hepatocelular/genética , Heme Oxigenase-1/biossíntese , Neoplasias Hepáticas/genética , MicroRNAs/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Heme Oxigenase-1/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/biossíntese , Transdução de Sinais
16.
Biochem Biophys Res Commun ; 477(4): 541-547, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27346130

RESUMO

Diabetic cardiomyopathy represents severe heart complications, and is the leading cause of morbidity and mortality among patients with diabetes. Although a few microRNAs (miRNAs) have been implicated in diabetes-related complications, a functional association between miRNAs and cardiac dysfunction in diabetic cardiomyopathy remains to be demonstrated. Our results show that miR-483-3p is upregulated in streptozotocin-induced diabetic mice, and cultured cardiomyocytes mimicking hyperglycemia. Overexpressing miR-483-3p in transgenic mice with diabetes mellitus (DM) exacerbated cardiomyocyte apoptosis by transcriptionally repressing insulin growth factor 1 (IGF1). Therefore, we have uncovered a novel signaling pathway, involving miR-483-3p-IGF1, that promotes myocardial cell apoptosis under high blood-glucose condition. Further, our study indicates that miR-483-3p could be a potential therapeutic target for managing diabetes-associated heart complications.


Assuntos
Apoptose/genética , Hiperglicemia/genética , MicroRNAs/genética , Miócitos Cardíacos/patologia , Animais , Linhagem Celular , Diabetes Mellitus Experimental/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos , Estreptozocina
17.
Artigo em Inglês | MEDLINE | ID: mdl-26472512

RESUMO

Protoporphyrin IX (PpIX) has been used as an efficient sensitizer in photodynamic diagnose, photodynamic therapy, and sonodynamic therapy. The level of PpIX is very important for diagnose or therapy effects. 5-aminolevulinic acid synthase 2 (ALAS2) is the key enzyme upstream of PpIX synthesis. To increase PpIXaccumulation, ALAS2 overexppression transgenic mice were generated. Plasmid containing alas2 gene was transfected in colonic carcinoma cell lines. Both in tissues of transgenic mice and in colonic carcinoma cells, the amount of PpIXaccumulation did increased. At the meanwhile, level of heme, which down stream of PpIX had not been changed. Overexpression ALAS2 in nonerythriod cells may become a novel approach to cause PpIX accumulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...