Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 7147, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932306

RESUMO

Ischemic stroke is lethal cerebrovascular disease, and reperfusion as the main strategy of blood supply restoration can cause severe ischemic brain damage. Considered as the major obstacle in medication for stroke, neuroinflammation after reperfusion undergoes dynamic progression, making precision treatment for stroke a Herculean task. In this work, we report a pathogenesis-adaptive polydopamine nanosystem for sequential therapy of ischemic stroke. Intrinsic free radical scavenging and tailored mesostructure of the nanosystem can attenuate oxidative stress at the initial stage. Upon microglial overactivation at the later stage, minocycline-loaded nanosystem can timely reverse the pro-inflammatory transition in response to activated matrix metalloproteinase-2, providing on-demand regulation. Further in vivo stroke study demonstrates a higher survival rate and improved brain recovery of the sequential strategy, compared with mono-therapy and combined therapy. Complemented with satisfactory biosafety results, this adaptive nanosystem for sequential and on-demand regulation of post-stroke neuroinflammation is a promising approach to ischemic stroke therapy.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Metaloproteinase 2 da Matriz , Doenças Neuroinflamatórias , Modelos Animais de Doenças , Acidente Vascular Cerebral/etiologia , Isquemia/complicações
3.
Neurochem Int ; 165: 105520, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933866

RESUMO

Effective therapeutic treatments for ischemic stroke are limited. Previous studies suggest selective activation of mitophagy alleviates cerebral ischemic injury while excessive autophagy is detrimental. However, few compounds are available to selectively activate mitophagy without affecting autophagy flux. Here, we found that acute administration of Umbelliferone (UMB) upon reperfusion exerted neuroprotective effects against ischemic injury in mice subjected to transient middle cerebral artery occlusion (tMCAO) and suppressed oxygen-glucose deprivation reperfusion (OGD-R)-induced apoptosis in SH-SY5Y cells. Interestingly, UMB promoted the translocation of mitophagy adaptor SQSTM1 to mitochondria and further reduced the mitochondrial content as well as the expression of SQSTM1 in SHSY5Y cells after OGD-R. Importantly, both the mitochondrial loss and reduction of SQSTM1 expression after UMB incubation can be reversed by autophagy inhibitor chloroquine and wortmannin, proving the mitophagy activation by UMB. Nevertheless, UMB failed to further affect neither LC3 lipidation nor the number of autophagosomes after cerebral ischemia in vivo and in vitro. Furthermore, UMB facilitated OGD-R-induced mitophagy in a Parkin-dependent manner. Inhibition of autophagy/mitophagy either pharmaceutically or genetically abolished the neuroprotective effects of UMB. Taken all, these results suggest that UMB protects against cerebral ischemic injury, both in vivo and in vitro, via promoting mitophagy without increasing the autophagic flux. UMB might serve as a potential leading compound for selectively activating mitophagy and the treatment of ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Neuroblastoma , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Camundongos , Humanos , Animais , Fármacos Neuroprotetores/uso terapêutico , Proteína Sequestossoma-1 , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Neuroblastoma/metabolismo , Autofagia/fisiologia , Mitocôndrias/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/prevenção & controle , Isquemia Encefálica/metabolismo , Oxigênio/metabolismo , Umbeliferonas/metabolismo , Umbeliferonas/farmacologia , Umbeliferonas/uso terapêutico , AVC Isquêmico/metabolismo
4.
Neurochem Res ; 47(12): 3697-3708, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35960484

RESUMO

Astrocytes act as "housekeeping cells" for maintaining cerebral homeostasis and play an important role in many disorders. Recent studies further highlight the contribution of autophagy to astrocytic functions, including astrogenesis, the astrocytic removal of neurotoxins or stressors, and astrocytic polarization. More importantly, genetic and pharmacological approaches have provided evidence that outlines the contributions of astrocytic autophagy to several brain disorders, including neurodegeneration, cerebral ischemia, and depression. In this study, we summarize the emerging role of autophagy in regulating astrocytic functions and discuss the contributions of astrocytic autophagy to different CNS disorders.


Assuntos
Astrócitos , Isquemia Encefálica , Humanos , Autofagia/fisiologia , Encéfalo
5.
Neurochem Int ; 148: 105114, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34192589

RESUMO

Despite the high lethality and increasing prevalence, effective therapy for ischemic stroke is still limited. As a crucial pathophysiological mechanism underlying ischemic injury, neuroinflammation remains a promising target for novel anti-ischemic strategies. However, the potential adverse effects limit the applications of traditional anti-inflammatory therapies. Recent explorations into the mechanisms of inflammation reveal that autophagy acts as a critical part in inflammation regulation. Autophagy refers to the hierarchically organized process resulting in the lysosomal degradation of intracellular components. Autophagic clearance of intracellular danger signals (DAMPs) suppresses the inflammation activation. Alternatively, autophagy blunts inflammation by removing either inflammasomes or the transcriptional modulators of cytokines. Interestingly, several compounds have been proved to alleviate neuroinflammatory responses and protect against ischemic injury by activating autophagy, highlighting autophagy as a promising target for the regulation of ischemia-induced neuroinflammation. Nonetheless, the molecular mechanism underlying autophagic regulation of neuroinflammation in the central nervous system is less clear and further explorations are still needed.


Assuntos
Autofagia , AVC Isquêmico/patologia , Doenças Neuroinflamatórias/patologia , Animais , Humanos , Neuroproteção
6.
Artigo em Inglês | MEDLINE | ID: mdl-32148533

RESUMO

Human diseases, especially infectious ones, have been evolving constantly. However, their treatment strategies are not developing quickly. Some diseases are caused by a variety of factors with very complex pathologies, and the use of a single drug cannot solve these problems. Traditional Chinese Medicine (TCM) medication is a unique treatment method in China. TCM formulae contain multiple herbs with multitarget, multichannel, and multilink characteristics. In recent years, with the flourishing development of network pharmacology, a new method for searching therapeutic drugs has emerged. The multitarget action in network pharmacology is consistent with the complex mechanisms of disease and drug action. Using network pharmacology to understand TCM is an emerging trend.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...