Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 140: 103-112, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331492

RESUMO

Highly crystalline carbon nitride polymers have shown great opportunities in overall water photosplitting; however, their mission in light-driven CO2 conversion remains to be explored. In this work, crystalline carbon nitride (CCN) nanosheets of poly triazine imide (PTI) embedded with melon domains are fabricated by KCl/LiCl-mediated polycondensation of dicyandiamide, the surface of which is subsequently deposited with ultrafine WO3 nanoparticles to construct the CCN/WO3 heterostructure with a S-scheme interface. Systematic characterizations have been conducted to reveal the compositions and structures of the S-scheme CCN/WO3 hybrid, featuring strengthened optical capture, enhanced CO2 adsorption and activation, attractive textural properties, as well as spatial separation and directed movement of light-triggered charge carriers. Under mild conditions, the CCN/WO3 catalyst with optimized composition displays a high photocatalytic activity for reducing CO2 to CO in a rate of 23.0 µmol/hr (i.e., 2300 µmol/(hr·g)), which is about 7-fold that of pristine CCN, along with a high CO selectivity of 90.6% against H2 formation. Moreover, it also manifests high stability and fine reusability for the CO2 conversion reaction. The CO2 adsorption and conversion processes on the catalyst are monitored by in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), identifying the crucial intermediates of CO2*-, COOH* and CO*, which integrated with the results of performance evaluation proposes the possible CO2 reduction mechanism.


Assuntos
Dióxido de Carbono , Nanopartículas , Nitrilas , Adsorção , Imidas
2.
Environ Monit Assess ; 196(1): 53, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110584

RESUMO

The soil contamination around smelting sites shows high spatial heterogeneity. This study investigated the impacts of distance, land use/cover types, land slopes, wind direction, and soil properties on the distribution and ecological risk of trace metals in the soil around a copper smelter. The results demonstrated that the average concentrations of As, Cd, Cu, Pb, and Zn were 248.0, 16.8, 502.4, 885.6, and 250.2 g mg kg-1, respectively, higher than their background values. The hotspots of trace metals were primarily distributed in the soil of smelting production areas, runoff pollution areas, and areas in the dominant wind direction. The concentrations of trace metals decreased with the distance to the smelting production area. An exponential decay regression revealed that, depending on the metal species, the influence distances of smelting emissions on trace metals in soil ranged from 450 to 1000 m. Land use/cover types and land slopes significantly affected trace element concentrations in the soil around the smelter. High concentrations of trace metals were observed in farmland, grassland, and flatland areas. The average concentrations of trace metals in the soil decreased in the order of flat land > gentle slope > steep slope. Soil pH values were significantly positively correlated with Cd, Cu, Pb, Zn, and As, and SOM was significantly positively correlated with Cd, Pb, and Zn in the soil. Trace metals in the soil of the study area posed a significant ecological risk. The primary factors influencing the distribution of ecological risk, as determined by the Ctree analysis, were land slope, soil pH, and distance to the source. These results can support the rapid identification of high-risk sites and facilitate risk prevention and control around smelting sites.


Assuntos
Metais Pesados , Poluentes do Solo , Oligoelementos , Solo/química , Metais Pesados/análise , Cobre/análise , Monitoramento Ambiental/métodos , Cádmio/análise , Chumbo/análise , Poluentes do Solo/análise , Medição de Risco , Oligoelementos/análise , China
3.
Sci Total Environ ; 895: 165160, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379937

RESUMO

Prediction of the long-term risk of trace metals leaching from soils at smelting sites is essential for groundwater protection. Herein, a mass balance-based stochastic model was developed to simulate the transport and probabilistic risks of trace metals in heterogeneous slag-soil-groundwater systems. The model was applied to a smelting slag yard with three stacking scenarios, including (A) fixed stacking amount, (B) stacking amount increasing yearly, and (C) slag removal after 20 years. The simulations suggested that the leaching flux and net accumulation of Cd in soils of the slag yard and abandoned farmland were greatest for scenario (B), which was followed by scenarios (A) and (C). In the slag yard, a plateau occurred in the Cd leaching flux curves, followed by a sharp increase. After 100 years of leaching, only scenario (B) had a high probabilistic risk (>99.9 %) of threatening groundwater safety under heterogeneous conditions. <11.1 % of the exogenous Cd may leach into groundwater under the worst scenario. The key parameters affecting Cd leaching risk include runoff interception rate (IRCR), input flux from slag release (I), and stacking time (ST). The simulation results were consistent with the values measured in a field investigation and laboratory leaching experiments. The results should help guide remediation objectives and measures to minimize the leaching risk at smelting sites.

4.
Huan Jing Ke Xue ; 44(1): 367-375, 2023 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-36635824

RESUMO

Copper smelting can cause heavy metal pollution in surrounding soil and threaten human health. This study examined the characteristics, distribution, and health risk of heavy metals in soil with different land uses around 40 copper smelting sites at home and abroad by collecting published literature data. The results showed that the mean values of ω(As), ω(Cd), ω(Cu), ω(Pb), and ω(Zn) in the soil around the copper smelting sites were 196, 10.5, 1948, 604, and 853 mg·kg-1, respectively. The order of Igeo was Cd(5.63)>Cu(3.88)>As(2.96)>Pb(2.30)>Zn(1.27), and the accumulation of Cd and Cu was the most serious. High Nemero index (NIPI) values were found in the soil around smelting sites with a long history of smelting, outdated process, and insufficient environmental protection measures. Significant correlations were found between the concentrations of heavy metals in the soil, which decreased with the sampling distance. The heavy metals mainly accumulated within 2-3 km from the smelting sites. Compared with the smelting history, scale, and process, land use type had a lower effect on soil heavy metal concentrations. The heavy metals in the soil around copper smelters may pose carcinogenic and non-carcinogenic risks on residents. The high health risks were mainly caused by As and Pb in smelting production areas, and Pb in woodland. These results may guide the risk prevention of heavy metal pollution in the soil around smelting sites.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Cobre , Solo , Cádmio , Chumbo , Poluentes do Solo/análise , Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , China
5.
Artigo em Inglês | MEDLINE | ID: mdl-35955055

RESUMO

Pb-Zn smelting is a major cause of heavy metal(loid) contaminations in soils. We collected data on heavy metal(loid)s in the soils near Pb-Zn smelteries globally from 54 peer-reviewed reports to study the metals' distribution, pollution index, and potential ecological and health risks. We observed that 90% of the studied Pb-Zn smelteries were distributed in Asia and Europe. Heavy metal(loid)s were mainly deposited within a 2 km distance to the smelteries, with mean concentrations (mg/kg) of 208.3 for As, 26.6 for Cd, 191.8 for Cu, 4192.6 for Pb, and 4187.7 for Zn, respectively. Cd and Pb concentrations in the soil exceeded their corresponding upper continental crust values several hundred folds, suggesting severe contamination. The smelting area had the highest heavy metal(loid) contamination in soil, followed by the forest land, farmland, and living area. Compared with the soil environmental standard values from various countries, As, Cd, Pb, and Zn were considered priority pollutants for protecting the ecosystem and human health. Likewise, As, Cd, and Pb were suggested as the priority pollutants for protecting groundwater safety. The potential ecological and health risks of heavy metal(loid)s in the soil within 2 km of Pb-Zn smelteries were severe and should be of concern.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes do Solo , Cádmio/análise , China , Ecossistema , Monitoramento Ambiental , Poluentes Ambientais/análise , Humanos , Chumbo/análise , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Zinco/análise
6.
Sci Total Environ ; 823: 153759, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35151753

RESUMO

Identifying sources and transport routes of heavy metals in soil is necessary for pollution control. This study integrated principal component analysis (PCA), positive matrix factorization (PMF), and geographic information system (GIS) mapping to identify the sources, transport routes, and apportion heavy metals in soil based on land uses around a smelting site. The results revealed that the mean concentrations of As, Hg, Cd, Pb, Zn, and Cu in the soil exceeded their background values except for Cr, Mn, and Fe, which were slightly higher. According to the mean Igeo values, the soils were most polluted with As, Cd, Pb, and Cu, followed a decreasing order of grassland (1.71, 2.38, 2.10, and 1.73) > agricultural land (0.632, 2.32, 1.19, and 1.08) > forestland (0.255, 0.952, 0.654, and 0.148). Smelter emissions and soil parent materials were the primary sources of heavy metals. The PCA and PMF factor hotspots visualized by GIS were mostly distributed within the smelting site, slag and wastewater runoff areas, and in the dominant wind direction. The GIS based PCA and PMF results confirmed that As, Cd, Pb, Cu, and Zn were transported mainly by surface runoff and atmospheric deposition, while Hg was mostly from atmospheric deposition. Grassland and agricultural land soils received heavy metals from surface runoff and atmospheric deposition, while forestland soils only received from atmospheric deposition. The integrated approach was useful in identifying the sources, transport routes, and contributions of the heavy metals among different land uses, thereby assisting policymakers in understanding the sources and transport routes of heavy metals in the soil around smelting areas.


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Sistemas de Informação Geográfica , Metais Pesados/análise , Análise de Componente Principal , Medição de Risco , Solo , Poluentes do Solo/análise , Águas Residuárias/análise
7.
Environ Pollut ; 282: 117038, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33838438

RESUMO

Non-ferrous smelting is a primary cause of serious soil pollution. Contamination and health risks of heavy metals in soils around various types of non-ferrous smelteries in China were assessed using data from peer-reviewed papers published between 2000 and 2019. Development in the relevant environmental policy in China was discussed. The studied non-ferrous smelting sites were mainly located in provinces that produced non-ferrous metals on a large scale. The average concentrations of the heavy metals in soils around the non-ferrous smelteries (in mg per kg of soil) were as follows: Cd, 19.8; Cu, 265; Pb, 1536; and Zn, 1371; the concentrations greatly exceeded their corresponding background values. The smelting sites with high soil contamination in terms of metal concentrations, geo-accumulation (Igeo), and pollution index (PI) were mainly distributed in several provinces of China, including Guangxi, Gansu, Hunan, Hubei, Chongqing, and Liaoning. Soils near smelteries that processed copper were the most polluted based on Igeo and PI. The accumulation of Cd and Pb in soils around non-ferrous smelteries would pose potentially high risks to residents. A series of environmental policies have proven successful in lowering the emissions of contaminants from the non-ferrous in China. The findings of the study suggested that the strategies to control soil pollution around non-ferrous smelteries should primarily focus on Cd and Pb.


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Nível de Saúde , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...