Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Yeast ; 38(1): 57-71, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32941662

RESUMO

The environmental yeast Nakaseomyces delphensis is, phylogenetically, the closest known species to Candida glabrata, a major fungal pathogen of humans. C. glabrata is haploid and described as asexual, while N. delphensis is also haploid, but has been described as competent for mating and meiosis. Both genomes contain homologues of all the genes necessary for sexual reproduction and also the genes for Ho-dependent mating-type switching, like Saccharomyces cerevisiae. We first report the construction of genetically engineered strains of N. delphensis, including by CRISPR-Cas 9 gene editing. We also report the description of the sexual cycle of N. delphensis. We show that it undergoes Ho-dependent mating-type switching in culture and that deletion of the HO gene prevents such switching and allows maintenance of stable, separate, MATa and MATalpha haploid strains. Rare, genetically selected diploids can be obtained through mating of haploid strains, mutated or not for the HO gene. In contrast to HO/HO diploids, which behave as expected, Δho/Δho diploids exhibit unusual profiles in flow cytometry. Both types of diploids can produce recombined haploid cells, which grow like the original haploid-type strain. Our experiments thus allow the genetic manipulation of N. delphensis and the reconstruction, in the laboratory, of its entire life cycle.


Assuntos
DNA Fúngico/genética , Edição de Genes , Genes Fúngicos Tipo Acasalamento , Genoma Fúngico , Meiose , Saccharomycetales/genética , Saccharomycetales/fisiologia , Sistemas CRISPR-Cas , Filogenia , Reprodução/genética
2.
PLoS Genet ; 16(10): e1008627, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057400

RESUMO

Mating-type switching is a complex mechanism that promotes sexual reproduction in Saccharomycotina. In the model species Saccharomyces cerevisiae, mating-type switching is initiated by the Ho endonuclease that performs a site-specific double-strand break (DSB) at MAT, repaired by homologous recombination (HR) using one of the two silent mating-type loci, HMLalpha and HMRa. The reasons why all the elements of the mating-type switching system have been conserved in some Saccharomycotina, that do not show a sexual cycle nor mating-type switching, remain unknown. To gain insight on this phenomenon, we used the yeast Candida glabrata, phylogenetically close to S. cerevisiae, and for which no spontaneous and efficient mating-type switching has been observed. We have previously shown that expression of S. cerevisiae's Ho (ScHo) gene triggers mating-type switching in C. glabrata, but this leads to massive cell death. In addition, we unexpectedly found, that not only MAT but also HML was cut in this species, suggesting the formation of multiple chromosomal DSBs upon HO induction. We now report that HMR is also cut by ScHo in wild-type strains of C. glabrata. To understand the link between mating-type switching and cell death in C. glabrata, we constructed strains mutated precisely at the Ho recognition sites. We find that even when HML and HMR are protected from the Ho-cut, introducing a DSB at MAT is sufficient to induce cell death, whereas one DSB at HML or HMR is not. We demonstrate that mating-type switching in C. glabrata can be triggered using CRISPR-Cas9, without high lethality. We also show that switching is Rad51-dependent, as in S. cerevisiae, but that donor preference is not conserved in C. glabrata. Altogether, these results suggest that a DSB at MAT can be repaired by HR in C. glabrata, but that repair is prevented by ScHo.


Assuntos
Candida glabrata/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Endonucleases/genética , Genes Fúngicos Tipo Acasalamento/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sistemas CRISPR-Cas/genética , Morte Celular/genética , Cromossomos Fúngicos/genética , Quebras de DNA de Cadeia Dupla , Regulação Fúngica da Expressão Gênica/genética , Recombinação Homóloga/genética , Rad51 Recombinase/genética
3.
NAR Genom Bioinform ; 2(2): lqaa027, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33575583

RESUMO

Candida glabrata is a cause of life-threatening invasive infections especially in elderly and immunocompromised patients. Part of human digestive and urogenital microbiota, C. glabrata faces varying iron availability, low during infection or high in digestive and urogenital tracts. To maintain its homeostasis, C. glabrata must get enough iron for essential cellular processes and resist toxic iron excess. The response of this pathogen to both depletion and lethal excess of iron at 30°C have been described in the literature using different strains and iron sources. However, adaptation to iron variations at 37°C, the human body temperature and to gentle overload, is poorly known. In this study, we performed transcriptomic experiments at 30°C and 37°C with low and high but sub-lethal ferrous concentrations. We identified iron responsive genes and clarified the potential effect of temperature on iron homeostasis. Our exploration of the datasets was facilitated by the inference of functional networks of co-expressed genes, which can be accessed through a web interface. Relying on stringent selection and independently of existing knowledge, we characterized a list of 214 genes as key elements of C. glabrata iron homeostasis and interesting candidates for medical applications.

4.
PLoS One ; 10(10): e0140990, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26491872

RESUMO

Candida glabrata is an apparently asexual haploid yeast that is phylogenetically closer to Saccharomyces cerevisiae than to Candida albicans. Its genome contains three MAT-like cassettes, MAT, which encodes either MATa or MATalpha information in different strains, and the additional loci, HML and HMR. The genome also contains an HO gene homolog, but this yeast has never been shown to switch mating-types spontaneously, as S. cerevisiae does. We have recently sequenced the genomes of the five species that, together with C. glabrata, make up the Nakaseomyces clade. All contain MAT-like cassettes and an HO gene homolog. In this work, we express the HO gene of all Nakaseomyces and of S. cerevisiae in C. glabrata. All can induce mating-type switching, but, despite the larger phylogenetic distance, the most efficient endonuclease is the one from S. cerevisiae. Efficient mating-type switching in C. glabrata is accompanied by a high cell mortality, and sometimes results in conversion of the additional cassette HML. Mortality probably results from the cutting of the HO recognition sites that are present, in HML and possibly HMR, contrary to what happens naturally in S. cerevisiae. This has implications in the life-cycle of C. glabrata, as we show that efficient MAT switching is lethal for most cells, induces chromosomal rearrangements in survivors, and that the endogenous HO is probably rarely active indeed.


Assuntos
Candida glabrata/citologia , Candida glabrata/genética , Morte Celular/fisiologia , Genes Fúngicos Tipo Acasalamento/fisiologia , Candida glabrata/fisiologia , Morte Celular/genética , Genes Fúngicos Tipo Acasalamento/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...