Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(2)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36832705

RESUMO

Tangential leakage loss is the primary factor that significantly affects the output performance of oil-free scroll expanders. A scroll expander can function under different operating conditions, and the flow of tangential leakage and generation mechanism is different. This study employed computational fluid dynamics to investigate the unsteady flow characteristics of the tangential leakage flow of a scroll expander with air as the working fluid. Consequently, the effects of different radial gap sizes, rotational speeds, inlet pressures, and temperatures on the tangential leakage were discussed. The tangential leakage decreased with increases in the scroll expander rotational speed, inlet pressure, and temperature, and decreased with decrease in radial clearance. With an equal-proportional increase in radial clearance, the flow form of the gas in the first expansion and back-pressure chambers became more complicated; when the radial clearance increased from 0.2 to 0.5 mm, the volumetric efficiency of the scroll expander decreased by approximately 5.0521%. Moreover, because of the large radial clearance, the tangential leakage flow maintained a subsonic flow. Further, the tangential leakage decreased with increase in rotational speed, and when the rotational speed increased from 2000 to 5000 r/min, the volumetric efficiency increased by approximately 8.7565%.

2.
Entropy (Basel) ; 24(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35052105

RESUMO

In this work, the heat transfer characteristics of supercritical pressure CO2 in vertical heating tube with 10 mm inner diameter under high mass flux were investigated by using an SST k-ω turbulent model. The influences of inlet temperature, heat flux, mass flux, buoyancy and flow acceleration on the heat transfer of supercritical pressure CO2 were discussed. Our results show that the buoyancy and flow acceleration effect based on single phase fluid assumption fail to explain the current simulation results. Here, supercritical pseudo-boiling theory is introduced to deal with heat transfer of scCO2. scCO2 is treated to have a heterogeneous structure consisting of vapor-like fluid and liquid-like fluid. A physical model of scCO2 heat transfer in vertical heating tube was established containing a gas-like layer near the wall and a liquid-like fluid layer. Detailed distribution of thermophysical properties and turbulence in radial direction show that scCO2 heat transfer is greatly affected by the thickness of gas-like film, thermal properties of gas-like film and turbulent kinetic energy in the near-wall region. Buoyancy parameters Bu < 10-5, Bu* < 5.6 × 10-7 and flow acceleration parameter Kv < 3 × 10-6 in this paper, which indicate that buoyancy effect and flow acceleration effect has no influence on heat transfer of scCO2 under high mass fluxes. This work successfully explains the heat transfer mechanism of supercritical fluid under high mass flux.

3.
Materials (Basel) ; 13(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033437

RESUMO

It is great significance to understand the mechanism of heat transfer deterioration of supercritical CO2 for heat exchanger design and safe operation in the supercritical CO2 Brayton cycle. Three-dimensional steady-state numerical simulation was performed to investigate the behavior of supercritical CO2 heat transfer in heated vertical up-flow tube with inner diameter di = 10 mm and heated length Lh = 2000 mm. Based on the characteristics of inverted-annular film boiling at subcritical pressure, the heat transfer model of supercritical CO2 flowing in the heated vertical tube was established in this paper. The mechanisms of heat transfer deterioration (HTD) and heat transfer recovery (HTR) for supercritical CO2 were discussed. Numerical results demonstrate that HTD is affected by multiple factors, such as the thickness and property of vapor-like film near the wall, the turbulence intensity near the interface between liquid-like and vapor-like, and in the liquid-like core region as well as the distribution of radial velocity vector. Among the above factors, the change of turbulent kinetic energy caused by the buoyancy effect seems to be a more important contributor to HTD and HTR. Furthermore, the influences of heat flux and mass flux on the distribution of wall temperature were analyzed, respectively. The reasons for the difference in wall temperature at different heat fluxes and mass fluxes were explained by capturing detailed thermal physical properties and turbulence fields. The present investigation can provide valuable information for the design optimization and safe operation of a supercritical CO2 heat exchanger.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...