Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(5): 1679-1691, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303952

RESUMO

Intrinsically conductive ruthenium oxide is an excellent material for energy storage and conversion. Herein, we present hydrous RuO2 (H-RuO2) as a potent reducing agent to achieve spontaneous growth of multiple noble metals at room temperature. Self-assembled gold and platinum, comprising small-sized nanoparticles, are generated on the surface of H-RuO2 without the need for additional templates. Structural analysis reveals that the disordered structure and the presence of oxygen vacancies trigger interfacial redox reactions between H-RuO2 and oxidative metal salts. The resulting integrated nanostructures, consisting of a metal oxide and different metals (H-RuO2@metal), are subsequently used to treat inflammatory bowel diseases. In addition to biomedical applications, our developed synthetic strategy, using reactive oxides to spontaneously generate multicomponent nanostructures, also holds great significance for other catalysis-based applications.

2.
Adv Mater ; 36(15): e2312540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38288781

RESUMO

On-site diagnostic tests that accurately identify disease biomarkers lay the foundation for self-healthcare applications. However, these tests routinely rely on single-mode signals and suffer from insufficient accuracy, especially for multiplexed point-of-care tests (POCTs) within a few minutes. Here, this work develops a dual-mode multiclassification diagnostic platform that integrates an electrochemiluminescence sensor and a field-effect transistor sensor in a microfluidic chip. The microfluidic channel guides the testing samples to flow across electro-optical sensor units, which produce dual-mode readouts by detecting infectious biomarkers of tuberculosis (TB), human rhinovirus (HRV), and group B streptococcus (GBS). Then, machine-learning classifiers generate three-dimensional (3D) hyperplanes to diagnose different diseases. Dual-mode readouts derived from distinct mechanisms enhance the anti-interference ability physically, and machine-learning-aided diagnosis in high-dimensional space reduces the occasional inaccuracy mathematically. Clinical validation studies with 501 unprocessed samples indicate that the platform has an accuracy approaching 99%, higher than the 77%-93% accuracy of rapid point-of-care testing technologies at 100% statistical power (>150 clinical tests). Moreover, the diagnosis time is 5 min without a trade-off of accuracy. This work solves the occasional inaccuracy issue of rapid on-site diagnosis, endowing POCT systems with the same accuracy as laboratory tests and holding unique prospects for complicated scenes of personalized healthcare.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Testes Imediatos , Humanos , Microfluídica , Biomarcadores
3.
Adv Sci (Weinh) ; 11(6): e2307840, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070186

RESUMO

Early diagnosis of acute diseases is restricted by the sensitivity and complex process of sample treatment. Here, an ultrasensitive, rapid, and portable electrochemiluminescence-microfluidic (ECL-M) system is described via sandwich-type immunoassay and surface plasmonic resonance (SPR) assay. Using a sandwich immunoreaction approach, the ECL-M system employs cardiac troponin-I antigen (cTnI) as a detection model with a Ru@SiO2 NPs labeled antibody as the signal probe. For miR-499-5p detection, gold nanoparticles generate SPR effects to enhance Ru(bpy)3 2+ ECL signals. The system based on alternating current (AC) electroosmotic flow achieves an LOD of 2 fg mL-1 for cTnI in 5 min and 10 aM for miRNAs in 10 min at room temperature. The point-of-care testing (POCT) device demonstrated 100% sensitivity and 98% specificity for cTnI detection in 123 clinical serum samples. For miR-499-5p, it exhibited 100% sensitivity and 97% specificity in 55 clinical serum samples. Continuous monitoring of these biomarkers in rats' saliva, urine, and interstitial fluid samples for 48 hours revealed observations rarely documented in biotic fluids. The ECL-M POCT device stands as a top-performing system for ECL analysis, offering immense potential for ultrasensitive, rapid, highly accurate, and facile detection and monitoring of acute diseases in POC settings.


Assuntos
Nanopartículas Metálicas , MicroRNAs , Ratos , Animais , Eletro-Osmose , Ouro , Dióxido de Silício , Doença Aguda , Microfluídica , Técnicas Eletroquímicas , Medições Luminescentes
4.
Sci Total Environ ; 913: 169525, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38141979

RESUMO

Plastic pollution pervades both marine and terrestrial ecosystems, fragmenting over time into microplastics (MPs) and nano-plastics (NPs). These particles infiltrate organisms via ingestion, inhalation, and dermal absorption, predominantly through the trophic interactions. This review elucidated the impacts of MPs/NPs on the reproductive viability of various species. MPs/NPs lead to reduced reproduction rates, abnormal larval development and increased mortality in aquatic invertebrates. Microplastics cause hormone secretion disorders and gonadal tissue damage in fish. In addition, the fertilization rate of eggs is reduced, and the larval deformity rate and mortality rate are increased. Male mammals exposed to MPs/NPs exhibit testicular anomalies, compromised sperm health, endocrine disturbances, oxidative stress, inflammation, and granulocyte apoptosis. In female mammals, including humans, exposure culminates in ovarian and uterine deformities, endocrine imbalances, oxidative stress, inflammation, granulosa cell apoptosis, and tissue fibrogenesis. Rodent offspring exposed to MPs experience increased mortality rates, while survivors display metabolic perturbations, reproductive anomalies, and weakened immunity. These challenges are intrinsically linked to the transgenerational conveyance of MPs. The ubiquity of MPs/NPs threatens biodiversity and, crucially, jeopardizes human reproductive health. The current findings underscore the exigency for comprehensive research and proactive interventions to ameliorate the implications of these pollutants.


Assuntos
Ecossistema , Poluentes Químicos da Água , Animais , Humanos , Feminino , Masculino , Microplásticos , Plásticos , Sêmen , Inflamação , Mamíferos , Poluentes Químicos da Água/toxicidade
5.
Nat Commun ; 14(1): 8382, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104194

RESUMO

Stretchable polymer semiconductors (PSCs) have seen great advancements alongside the development of soft electronics. But it remains a challenge to simultaneously achieve high charge carrier mobility and stretchability. Herein, we report the finding that stretchable PSC thin films (<100-nm-thick) with high stretchability tend to exhibit multi-modal energy dissipation mechanisms and have a large relative stretchability (rS) defined by the ratio of the entropic energy dissipation to the enthalpic energy dissipation under strain. They effectively recovered the original molecular ordering, as well as electrical performance, after strain was released. The highest rS value with a model polymer (P4) exhibited an average charge carrier mobility of 0.2 cm2V-1s-1 under 100% biaxial strain, while PSCs with low rS values showed irreversible morphology changes and rapid degradation of electrical performance under strain. These results suggest rS can be used as a parameter to compare the reliability and reversibility of stretchable PSC thin films.

6.
J Orthop Surg Res ; 18(1): 533, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37496029

RESUMO

BACKGROUND: Postmenopausal osteoporosis (PMOP) is a common condition that leads to a loss of bone density and an increased risk of fractures in women. Recent evidence suggests that exosomal miRNAs are involved in regulating bone development and osteogenesis. However, exosomal miRNAs as biomarkers for PMOP diagnosis have not been systematically evaluated. In this study, we aim to identify PMOP-associated circulating exosomal miRNAs and evaluate their diagnostic performance. METHODS: We performed next-generation sequencing and bioinformatics analysis of plasma exosomal miRNAs from 12 PMOP patients and 12 non-osteoporosis controls to identify PMOP-associated exosomal miRNAs, and then validated them in an independent natural community cohort with 26 PMOP patients and 21 non-osteoporosis controls. Exosomes were isolated with the size exclusion chromatography method from the plasma of elder postmenopausal women. The plasma exosomal miRNA profiles were characterized in PMOP paired with controls with next-generation sequencing. Potential plasma exosomal miRNAs were validated by qRT-PCR in the validation cohort, and their performance in diagnosing PMOP was systematically evaluated with the receiver operating characteristic curve. RESULTS: Twenty-seven miRNAs were identified as differentially expressed in PMOP versus controls in sequencing data, of which six exosomal miRNAs (miR-196-5p, miR-224-5p, miR320d, miR-34a-5p, miR-9-5p, and miR-98-5p) were confirmed to be differentially expressed in PMOP patients by qRT-PCR in the validation cohort. The three miRNAs combination (miR-34a-5p + miR-9-5p + miR-98-5p) demonstrated the best diagnostic performance, with an AUC = 0.734. In addition, the number of pregnancies was found to be an independent risk factor that can improve the performance of exosomal miRNAs in diagnosing PMOP. CONCLUSIONS: These results suggested that the plasma exosomal miRNAs had the potential to serve as noninvasive diagnostic biomarkers for PMOP.


Assuntos
Exossomos , MicroRNAs , Osteoporose Pós-Menopausa , Humanos , Feminino , Idoso , Osteoporose Pós-Menopausa/diagnóstico , Osteoporose Pós-Menopausa/genética , MicroRNAs/genética , Biomarcadores/análise , Exossomos/genética , Osteogênese
7.
Sci Adv ; 9(20): eadg0949, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37196095

RESUMO

Molecular therapeutics are limited for Candida vaginitis because they damage normal cells and tissues of vagina, aggravating the imbalance of vaginal microbiota and increasing the recurrence. To tackle this limitation, through the combination of peroxidase-like rGO@FeS2 nanozymes [reduced graphene oxide (rGO)] with Lactobacillus-produced lactic acid and H2O2, a responsive hyaluronic acid (HA) hydrogel rGO@FeS2/Lactobacillus@HA (FeLab) is developed. FeLab has simultaneous anti-Candida albicans and vaginal microbiota-modulating activities. In particular, the hydroxyl radical produced from rGO@FeS2 nanozymes and Lactobacillus kills C. albicans isolated from clinical specimens without affecting Lactobacillus. In mice with Candida vaginitis, FeLab has obvious anti-C. albicans activity but hardly damages vaginal mucosa cells, which is beneficial to vaginal mucosa repair. Moreover, a higher proportion of Firmicutes (especially Lactobacillus) and a decrease in Proteobacteria reshape a healthy vaginal microbiota to reduce the recurrence. These results provide a combined therapeutic of nanozymes and probiotics with translational promise for Candida vaginitis therapy.


Assuntos
Candidíase Vulvovaginal , Probióticos , Feminino , Humanos , Animais , Camundongos , Peróxido de Hidrogênio , Hidrogéis , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , Vagina , Candida albicans , Lactobacillus , Probióticos/farmacologia , Probióticos/uso terapêutico
8.
Anal Chem ; 95(14): 5937-5945, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36972556

RESUMO

While great progress in nanozyme-enabled analytical chemistry has been made, most current nanozyme-based biosensing platforms are based on peroxidase-like nanozymes. However, peroxidase-like nanozymes with multienzymatic activities can influence the detection sensitivity and accuracy, while the use of unstable hydrogen peroxide (H2O2) in a peroxidase-like catalytic reaction may result in the reproducibility challenge of sensing signals. We envision that constructing biosensing systems by using oxidase-like nanozymes can address these limitations. Herein, we reported that platinum-nickel nanoparticles (Pt-Ni NPs) with Pt-rich shells and Ni-rich cores possessed high oxidase-like catalytic efficiency, exhibiting a 2.18-fold higher maximal reaction velocity (vmax) than initial pure Pt NPs. The oxidase-like Pt-Ni NPs were applied to develop a colorimetric assay for the determination of total antioxidant capacity (TAC). The antioxidant levels of four bioactive small molecules, two antioxidant nanomaterials, and three cells were successfully measured. Our work not only provides new insights for preparing highly active oxidase-like nanozymes but also manifests their applications for TAC analysis.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Antioxidantes , Oxirredutases , Platina/química , Níquel , Peróxido de Hidrogênio/análise , Reprodutibilidade dos Testes , Peroxidase/química , Peroxidases , Nanopartículas Metálicas/química
9.
Adv Mater ; 35(1): e2203541, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36281793

RESUMO

Hemispherical image sensors simplify lens designs, reduce optical aberrations, and improve image resolution for compact wide-field-of-view cameras. To achieve hemispherical image sensors, organic materials are promising candidates due to the following advantages: tunability of optoelectronic/spectral response and low-temperature low-cost processes. Here, a photolithographic process is developed to prepare a hemispherical image sensor array using organic thin film photomemory transistors with a density of 308 pixels per square centimeter. This design includes only one photomemory transistor as a single active pixel, in contrast to the conventional pixel architecture, consisting of select/readout/reset transistors and a photodiode. The organic photomemory transistor, comprising light-sensitive organic semiconductor and charge-trapping dielectric, is able to achieve a linear photoresponse (light intensity range, from 1 to 50 W m-2 ), along with a responsivity as high as 1.6 A W-1 (wavelength = 465 nm) for a dark current of 0.24 A m-2 (drain voltage = -1.5 V). These observed values represent the best responsivity for similar dark currents among all the reported hemispherical image sensor arrays to date. A transfer method was further developed that does not damage organic materials for hemispherical organic photomemory transistor arrays. These developed techniques are scalable and are amenable for other high-resolution 3D organic semiconductor devices.

10.
ACS Nano ; 16(12): 20567-20576, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36394328

RESUMO

Designing metal-metal oxide heteronanostructures with synergistic and superior activities (unattainable in the case of a single entity) is of great interest for a wide range of technological applications. Traditional synthetic strategies typically require reducing agents, stabilizing ligands, or high temperature reductive treatment to produce oxide-supported metals. Herein, a facile noble metal deposition strategy is developed to produce silver, gold, and platinum nanocrystals on the surface of hollow mesoporous cerium oxide nanospheres without any pretreatment. Unlike the galvanic replacement reaction, the developed protocol employs the innate reductive potential of CeO2 to produce a high density of ultrafine noble metal nanocrystals homogeneously immobilized onto the surface of CeO2 nanospheres. The multienzyme-like activities (i.e., superoxide dismutase-like and catalase-like) of CeO2@metal nanostructures, originating from CeO2 and metal nanoparticles, were effectively utilized for anti-inflammatory therapies in two in vivo models. This oxygen vacancy-mediated reduction strategy can be generalized to produce diverse metal-metal oxide nanostructures for a wide range of applications.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Óxidos , Elétrons , Nanopartículas Metálicas/química , Cério/farmacologia , Cério/química , Nanopartículas/química , Anti-Inflamatórios
11.
Compr Psychiatry ; 114: 152297, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35123176

RESUMO

BACKGROUND: Despite auditory cognition dysfunction being consistently found in people with schizophrenia, the evidence from non-clinical individuals with schizotypy is rare and inconsistent. No studies thus far have comprehensively assessed the association among auditory perception, musical cognition, and schizotypy in non-clinical samples. AIM: We aimed to explore abnormalities in auditory skills, from basic perception to musical ability, among individuals with schizotypal traits. METHOD: An extreme-group design was adopted. Sixty-six participants from the schizotypy and control groups were screened from 1093 young adults using the Schizotypal Personality Questionnaire (SPQ). Auditory acuity was assessed using four auditory discrimination threshold tests, and musical ability was evaluated through the Montreal Battery of Evaluation of Amusia (MBEA). Basic demographic information and musical backgrounds were assessed and matched, and depression, anxiety, and digit-span index were evaluated and controlled. RESULTS: Elevated sensitivity in auditory perception and improved musical talent were found in young adults with high schizotypal traits. Auditory acuity and musical ability were positively correlated with schizotypy and its factors among participants across groups. A regression analysis in the control group showed that cognitive perceptual scores of SPQ positively predicted auditory temporal sensitivity. The mediation analysis revealed an indirect effect of pure tone duration discrimination between musical rhythmic ability and positive factor of schizotypy. DISCUSSION: Elevated sensitivity in auditory temporal perception and improved musical talent in young adults with high schizotypy may contribute to explaining the variation of auditory process in the development of schizophrenia-spectrum disorders. It can also help elucidate the association between psychopathology and creativity in auditory modality.

12.
Talanta ; 238(Pt 2): 123018, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808569

RESUMO

Mass spectrometry (MS)-based proteomics have been extensively applied in clinical practice to discover potential protein and peptide biomarkers. However, the traditional sample pretreatment workflow remains labor-intensive and time-consuming, which limits the application of MS-based proteomic biomarker discovery studies in a high throughput manner. In the current work, we improved the previously reported procedure of the simple and rapid sample preparation methods (RSP) by introducing macroporous ordered siliceous foams (MOSF), namely RSP-MOSF. With the aid of MOSF, we further reduced the digestion time to 10 min, facilitating the whole sample handling process within 30 min. Combining with 30 min direct data independent acquisition (DIA) of LC-MS/MS, we accomplished a serum sample analysis in 1 h. Comparing with the RSP method, the performance of protein and peptide identification, quantitation, as well as the reproducibility of RSP-MOSF is comparable or even outperformed the RSP method. We further applied this workflow to analyze serum samples for potential candidate biomarker discovery of pancreatic cancer. Overall, 576 serum proteins were detected with 41 proteins significantly changed, which could serve as potential biomarkers for pancreatic cancer. Additionally, we evaluated the performance of RSP-MOSF method in a 96-well plate format which demonstrated an excellent reproducibility of the analysis. These results indicated that RSP-MOSF method had the potential to be applied on an automatic platform for further scaled analysis.


Assuntos
Neoplasias Pancreáticas , Proteômica , Biomarcadores , Cromatografia Líquida , Humanos , Nanotecnologia , Neoplasias Pancreáticas/diagnóstico , Reprodutibilidade dos Testes , Manejo de Espécimes , Espectrometria de Massas em Tandem , Fluxo de Trabalho
13.
Science ; 373(6550): 88-94, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34210882

RESUMO

Polymeric electronic materials have enabled soft and stretchable electronics. However, the lack of a universal micro/nanofabrication method for skin-like and elastic circuits results in low device density and limited parallel signal recording and processing ability relative to silicon-based devices. We present a monolithic optical microlithographic process that directly micropatterns a set of elastic electronic materials by sequential ultraviolet light-triggered solubility modulation. We fabricated transistors with channel lengths of 2 micrometers at a density of 42,000 transistors per square centimeter. We fabricated elastic circuits including an XOR gate and a half adder, both of which are essential components for an arithmetic logic unit. Our process offers a route to realize wafer-level fabrication of complex, high-density, and multilayered elastic circuits with performance rivaling that of their rigid counterparts.

14.
Nat Commun ; 10(1): 2161, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089127

RESUMO

Carbon nanotube (CNT) thin-film transistor (TFT) is a promising candidate for flexible and wearable electronics. However, it usually suffers from low semiconducting tube purity, low device yield, and the mismatch between p- and n-type TFTs. Here, we report low-voltage and high-performance digital and analog CNT TFT circuits based on high-yield (19.9%) and ultrahigh purity (99.997%) polymer-sorted semiconducting CNTs. Using high-uniformity deposition and pseudo-CMOS design, we demonstrated CNT TFTs with good uniformity and high performance at low operation voltage of 3 V. We tested forty-four 2-µm channel 5-stage ring oscillators on the same flexible substrate (1,056 TFTs). All worked as expected with gate delays of 42.7 ± 13.1 ns. With these high-performance TFTs, we demonstrated 8-stage shift registers running at 50 kHz and the first tunable-gain amplifier with 1,000 gain at 20 kHz. These results show great potentials of using solution-processed CNT TFTs for large-scale flexible electronics.

15.
Nat Mater ; 18(6): 594-601, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30988452

RESUMO

Stretchable semiconducting polymers have been developed as a key component to enable skin-like wearable electronics, but their electrical performance must be improved to enable more advanced functionalities. Here, we report a solution processing approach that can achieve multi-scale ordering and alignment of conjugated polymers in stretchable semiconductors to substantially improve their charge carrier mobility. Using solution shearing with a patterned microtrench coating blade, macroscale alignment of conjugated-polymer nanostructures was achieved along the charge transport direction. In conjunction, the nanoscale spatial confinement aligns chain conformation and promotes short-range π-π ordering, substantially reducing the energetic barrier for charge carrier transport. As a result, the mobilities of stretchable conjugated-polymer films have been enhanced up to threefold and maintained under a strain up to 100%. This method may also serve as the basis for large-area manufacturing of stretchable semiconducting films, as demonstrated by the roll-to-roll coating of metre-scale films.

16.
Science ; 360(6392): 998-1003, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29853682

RESUMO

The distributed network of receptors, neurons, and synapses in the somatosensory system efficiently processes complex tactile information. We used flexible organic electronics to mimic the functions of a sensory nerve. Our artificial afferent nerve collects pressure information (1 to 80 kilopascals) from clusters of pressure sensors, converts the pressure information into action potentials (0 to 100 hertz) by using ring oscillators, and integrates the action potentials from multiple ring oscillators with a synaptic transistor. Biomimetic hierarchical structures can detect movement of an object, combine simultaneous pressure inputs, and distinguish braille characters. Furthermore, we connected our artificial afferent nerve to motor nerves to construct a hybrid bioelectronic reflex arc to actuate muscles. Our system has potential applications in neurorobotics and neuroprosthetics.


Assuntos
Vias Aferentes , Materiais Biomiméticos , Próteses Neurais , Mecanorreceptores , Neurônios Motores , Contração Muscular , Músculos/inervação , Músculos/fisiologia , Pressão , Robótica
17.
Sci Adv ; 3(9): e1700159, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28913422

RESUMO

Two-dimensional materials, such as graphene, are attractive for both conventional semiconductor applications and nascent applications in flexible electronics. However, the high tensile strength of graphene results in fracturing at low strain, making it challenging to take advantage of its extraordinary electronic properties in stretchable electronics. To enable excellent strain-dependent performance of transparent graphene conductors, we created graphene nanoscrolls in between stacked graphene layers, referred to as multilayer graphene/graphene scrolls (MGGs). Under strain, some scrolls bridged the fragmented domains of graphene to maintain a percolating network that enabled excellent conductivity at high strains. Trilayer MGGs supported on elastomers retained 65% of their original conductance at 100% strain, which is perpendicular to the direction of current flow, whereas trilayer films of graphene without nanoscrolls retained only 25% of their starting conductance. A stretchable all-carbon transistor fabricated using MGGs as electrodes exhibited a transmittance of >90% and retained 60% of its original current output at 120% strain (parallel to the direction of charge transport). These highly stretchable and transparent all-carbon transistors could enable sophisticated stretchable optoelectronics.

18.
ACS Nano ; 11(8): 7925-7937, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28745872

RESUMO

Stretchable form factors enable electronic devices to conform to irregular 3D structures, including soft and moving entities. Intrinsically stretchable devices have potential advantages of high surface coverage of active devices, improved durability, and reduced processing costs. This work describes intrinsically stretchable transistors composed of single-walled carbon nanotube (SWNT) electrodes and semiconductors and a dielectric that consists of a nonpolar elastomer. The use of a nonpolar elastomer dielectric enabled hysteresis-free device characteristics. Compared to devices on SiO2 dielectrics, stretchable devices with nonpolar dielectrics showed lower mobility in ambient conditions because of the absence of doping from water. The effect of a SWNT band gap on device characteristics was investigated by using different SWNT sources as the semiconductor. Large-band-gap SWNTs exhibited trap-limited behavior caused by the low capacitance of the dielectric. In contrast, high-current devices based on SWNTs with smaller band gaps were more limited by contact resistance. Of the tested SWNT sources, SWNTs with a maximum diameter of 1.5 nm performed the best, with a mobility of 15.4 cm2/Vs and an on/off ratio >103 for stretchable transistors. Large-band-gap devices showed increased sensitivity to strain because of a pronounced dependence on the dielectric thickness, whereas contact-limited devices showed substantially less strain dependence.

19.
Sci Adv ; 3(3): e1602076, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28345040

RESUMO

Previous breakthroughs in stretchable electronics stem from strain engineering and nanocomposite approaches. Routes toward intrinsically stretchable molecular materials remain scarce but, if successful, will enable simpler fabrication processes, such as direct printing and coating, mechanically robust devices, and more intimate contact with objects. We report a highly stretchable conducting polymer, realized with a range of enhancers that serve a dual function: (i) they change morphology and (ii) they act as conductivity-enhancing dopants in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The polymer films exhibit conductivities comparable to the best reported values for PEDOT:PSS, with over 3100 S/cm under 0% strain and over 4100 S/cm under 100% strain-among the highest for reported stretchable conductors. It is highly durable under cyclic loading, with the conductivity maintained at 3600 S/cm even after 1000 cycles to 100% strain. The conductivity remained above 100 S/cm under 600% strain, with a fracture strain of 800%, which is superior to even the best silver nanowire- or carbon nanotube-based stretchable conductor films. The combination of excellent electrical and mechanical properties allowed it to serve as interconnects for field-effect transistor arrays with a device density that is five times higher than typical lithographically patterned wavy interconnects.

20.
Science ; 355(6320): 59-64, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059762

RESUMO

Soft and conformable wearable electronics require stretchable semiconductors, but existing ones typically sacrifice charge transport mobility to achieve stretchability. We explore a concept based on the nanoconfinement of polymers to substantially improve the stretchability of polymer semiconductors, without affecting charge transport mobility. The increased polymer chain dynamics under nanoconfinement significantly reduces the modulus of the conjugated polymer and largely delays the onset of crack formation under strain. As a result, our fabricated semiconducting film can be stretched up to 100% strain without affecting mobility, retaining values comparable to that of amorphous silicon. The fully stretchable transistors exhibit high biaxial stretchability with minimal change in on current even when poked with a sharp object. We demonstrate a skinlike finger-wearable driver for a light-emitting diode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...