Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1207125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799610

RESUMO

Coumarin-3-carboxylic acid (3-CCA), previously screened from natural coumarins, was found to possess strong antibacterial activity against Acidovorax citrulli (Ac). In order to further evaluate the activity of this compound against plant bacterial pathogens and explore its potential value as a bactericidal lead compound, the activity of 3-CCA against 14 plant pathogenic bacteria in vitro and in vivo was tested. Results showed that 3-CCA exhibited strong in vitro activities against Ac, Ralstonia solanacearum, Xanthomonas axonopodis pv. manihotis, X. oryzae pv. oryzae, and Dickeya zeae with EC50 values ranging from 26.64 µg/mL to 40.73 µg/mL. Pot experiment results showed that 3-CCA had powerful protective and curative effects against Ac. In addition, the protective efficiency of 3-CCA was almost equivalent to that of thiodiazole copper at the same concentration. The results of SEM and TEM observation and conductivity tests showed that 3-CCA disrupted the integrity of the cell membrane and inhibited polar flagella growth. Furthermore, 3-CCA resulted in reductions in motility and extracellular exopolysaccharide (EPS) production of Ac while inhibiting the biofilm formation of Ac. These findings indicate that 3-CCA could be a promising natural lead compound against plant bacterial pathogens to explore novel antibacterial agents.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(11): 3764-71, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30226713

RESUMO

Identification of plant-pathogenic fungi is time-consuming due to cultivation and microscopic examination and can be influenced by the interpretation of the micro-morphological characters observed. The present investigation aimed to create a simple but sophisticated method for the identification of plant-pathogenic fungi by Fourier transform infrared (FTIR) spectroscopy. In this study, FTIR-attenuated total reflectance (ATR) spectroscopy was used in combination with chemometric analysis for identification of important pathogenic fungi of horticultural plants. Mixtures of mycelia and spores from 27 fungal strains belonging to nine different families were collected from liquid PD or solid PDA media cultures and subjected to FTIR-ATR spectroscopy measurements. The FTIR-ATR spectra ranging from 4 000 to 400 cm-1 were obtained. To classify the FTIR-ATR spectra, cluster analysis was compared with canonical vitiate analysis (CVA) in the spectral regions of 3 050~2 800 and 1 800~900 cm-1. Results showed that the identification accuracies achieved 97.53% and 99.18% for the cluster analysis and CVA analysis, respectively, demonstrating the high potential of this technique for fungal strain identification.


Assuntos
Espectroscopia de Infravermelho com Transformada de Fourier , Análise por Conglomerados , Fungos , Micélio , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...