Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 381
Filtrar
1.
J Hazard Mater ; 476: 135135, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38986409

RESUMO

Rhizosphere bacteria are critical for supporting plant performance in stressful environments. Understanding the assembly and co-occurrence of rhizosphere bacterial communities contributes significantly to both plant growth and heavy metal accumulation. In this study, Ligustrum lucidum and Melia azedarach were planted in soils with simulated varying levels of Pb-Zn contamination. The Rhizosphere bacterial communities were investigated by using 16S rRNA gene sequencing. The impacts of Pb-Zn contamination on the diversity and structure of the rhizosphere bacterial community were found to be greater than those of both tree species. The variation in bacterial community structure in both trees was mainly driven by the combinations of Pb-Zn and soil properties. Deterministic processes (non-planted, 82 %; L. lucidum, 73 %; M. azedarach, 55 %) proved to be the most important assembly processes for soil bacterial communities, but both trees increased the importance of stochastic processes (18 %, 27 %, 45 %). The rhizosphere co-occurrence networks exhibited greater stability compared to the non-planted soil networks. Rare taxa played a dominant role in maintaining the stability of rhizosphere networks, as most of the keystone taxa within rhizosphere networks belonged to rare taxa. Dissimilarities in the structure and network complexity of rhizosphere bacterial communities were significantly associated with differences in tree biomass and metal accumulation. These variations in response varied between both trees, with L. lucidum exhibiting greater potential for phytoremediation in its rhizosphere compared to M. azedarach. Our results offer valuable insights for designing effective microbe-assisted phytoremediation systems.

2.
ACS Nano ; 18(24): 15661-15670, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38841753

RESUMO

Methanogenic archaea, characterized by their cell membrane lipid molecules consisting of isoprenoid chains linked to glycerol-1-phosphate via ether bonds, exhibit exceptional adaptability to extreme environments. However, this distinct lipid architecture also complicates the interactions between methanogenic archaea and nanoparticles. This study addresses this challenge by exploring the interaction and transformation of selenium nanoparticles (SeNPs) within archaeal Methanosarcina acetivorans C2A. We demonstrated that the effects of SeNPs are highly concentration-dependent, with chemical stimulation of cellular processes at lower SeNPs concentrations as well as oxidative stress and metabolic disruption at higher concentrations. Notably, we observed the formation of a protein corona on SeNPs, characterized by the selective adsorption of enzymes critical for methylotrophic methanogenesis and those involved in selenium methylation, suggesting potential alterations in protein function and metabolic pathways. Furthermore, the intracellular transformation of SeNPs into both inorganic and organic selenium species highlighted their bioavailability and dynamic transformation within archaea. These findings provide vital insights into the nano-bio interface in archaeal systems, contributing to our understanding of archaeal catalysis and its broader applications.


Assuntos
Methanosarcina , Nanopartículas , Selênio , Selênio/química , Selênio/metabolismo , Methanosarcina/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Estresse Oxidativo
3.
Toxicol Res (Camb) ; 13(3): tfae079, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38828128

RESUMO

Background: Diabetic nephropathy (DN) is the most common microvascular complication of diabetes mellitus (DM), being the second cause of end-stage renal disease globally. Podocyte injury is closely associated with DN developmen. Our study aimed to investigate the role of long non-coding RNA (lncRNA) TTN-AS1 in DN-associated podocyte injury. Methods: The mouse podocyte cell line (MPC5) and human primary podocytes were stimulated by high glucose (HG; 30 nM glucose) to establish the cellular model of DN. Before HG stimulation, both podocytes were transfected with sh-TTN-AS1#1/2 or pcDNA3.1/STAT3 to evaluate the influence of TTN-AS1 knockdown or STAT3 overexpression on HG-induced podocyte injury. TTN-AS1 and STAT3 expression in both podocytes was examined by RT-qPCR. Cell viability and death were assessed by CCK-8 and LDH release assay. ELISA was adopted for testing IL-6 and TNF-α contents in cell supernatants. The levels of oxidative stress markers (ROS, MDA, SOD, and GSH) in cell supernatants were determined by commercial kits. Western blotting was used for measuring the expression of fibrosis markers (fibronectin and α-SMA and podocyte function markers (podocin and nephrin) in podocytes. Results: HG stimulation led to decreased cell viability, increased cell death, fibrosis, inflammation, cell dysfunction and oxidative stress in podocytes. However, knockdown of TTN-AS1 ameliorated HG-induced podocyte injury. Mechanically, the transcription factor STAT3 interacted with TTN-AS1 promoter and upregulated TTN-AS1 expression. STAT3 overexpression offset the protective effect of TTN-AS1 silencing on HG-induced podocyte damage. Conclusion: Overall, STAT3-mediated upregulation of lncRNA TTN-AS1 could exacerbate podocyte injury in DN through suppressing inflammation and oxidative stress.

4.
Prog Neurobiol ; 240: 102654, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945516

RESUMO

Neuromyelitis optica (NMO) arises from primary astrocytopathy induced by autoantibodies targeting the astroglial protein aquaporin 4 (AQP4), leading to severe neurological sequelae such as vision loss, motor deficits, and cognitive decline. Mounting evidence has shown that dysregulated activation of complement components contributes to NMO pathogenesis. Complement C3 deficiency has been shown to protect against hippocampal neurodegeneration and cognitive decline in neurodegenerative disorders (e.g., Alzheimer's disease, AD) and autoimmune diseases (e.g., multiple sclerosis, MS). However, whether inhibiting the C3 signaling can ameliorate cognitive dysfunctions in NMO remains unclear. In this study, we found that the levels of C3a, a split product of C3, significantly correlate with cognitive impairment in our patient cohort. In response to the stimulation of AQP4 autoantibodies, astrocytes were activated to secrete complement C3, which inhibited the development of cultured neuronal dendritic arborization. NMO mouse models exhibited reduced adult hippocampal newborn neuronal dendritic and spine development, as well as impaired learning and memory functions, which could be rescued by decreasing C3 levels in astrocytes. Mechanistically, we found that C3a engaged with C3aR to impair neuronal development by dampening ß-catenin signalling. Additionally, inhibition of the C3-C3aR-GSK3ß/ß-catenin cascade restored neuronal development and ameliorated cognitive impairments. Collectively, our results suggest a pivotal role of the activation of the C3-C3aR network in neuronal development and cognition through mediating astrocyte and adult-born neuron communication, which represents a potential therapeutic target for autoimmune-related cognitive impairment diseases.

5.
J Agric Food Chem ; 72(22): 12762-12774, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775801

RESUMO

Small-granule starches (SGSs) have technological advantages over starches of conventional sizes for many applications. The study compared the granular characteristics of three SGSs (from amaranth, quinoa, and taro) with those of maize and potato starches and revealed their molecular basis. The results indicated that the supramolecular architecture of starch granules was not necessarily correlated with granule size. Acid hydrolysis of amaranth and quinoa starches was fast due to not only their small granule sizes but also the defects in the supramolecular structure, to which short external and internal chain lengths of amaranth and quinoa amylopectins contributed. By comparison, the granular architecture of taro starch granules was more stable partly due to the longer external chain length of taro amylopectin. Comparison of the molecular composition of branched subunits (released by using α-amylase of Bacillus amyloliquefaciens) in amylopectins and that in lintnerized starches suggested a significant heterogeneous degradation of amaranth and quinoa starches at supramolecular levels.


Assuntos
Amaranthus , Chenopodium quinoa , Amido , Amido/química , Amido/metabolismo , Amaranthus/química , Chenopodium quinoa/química , Tamanho da Partícula , Zea mays/química , Hidrólise , Solanum tuberosum/química , Amilopectina/química
6.
Carbohydr Polym ; 337: 122118, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710546

RESUMO

Chrysin and rutin are natural polyphenols with multifaceted biological activities but their applications face challenges in bioavailability. Encapsulation using starch nanoparticles (SNPs) presents a promising approach to overcome the limitations. In this study, chrysin and rutin were encapsulated into self-assembled SNPs derived from quinoa (Q), maize (M), and waxy maize (WM) starches using enzyme-hydrolysis. Encapsulation efficiencies ranged from 74.3 % to 79.1 %, with QSNPs showing superior performance. Simulated in vitro digestion revealed sustained release and higher antioxidant activity in QSNPs compared to MSNPs and WMSNPs. Variations in encapsulation properties among SNPs from different sources were attributed to the differences in the structural properties of the starches. The encapsulated SNPs exhibited excellent stability, retaining over 90 % of chrysin and 85 % of rutin after 15 days of storage. These findings underscore the potential of SNP encapsulation to enhance the functionalities of chrysin and rutin, facilitating the development of fortified functional foods with enhanced bioavailability and health benefits.


Assuntos
Antioxidantes , Chenopodium quinoa , Flavonoides , Nanopartículas , Rutina , Amido , Zea mays , Flavonoides/química , Rutina/química , Zea mays/química , Nanopartículas/química , Chenopodium quinoa/química , Amido/química , Antioxidantes/química , Antioxidantes/farmacologia , Disponibilidade Biológica , Hidrólise
7.
Medicina (Kaunas) ; 60(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792963

RESUMO

Background and Objectives: Connexin 43 (Cx43) is involved in the transfer of small signaling molecules between neighboring cells, thereby exerting a major influence on the initiation and progression of tumorigenesis. However, there is a lack of systematic research on Cx43 expression and its predictive role in clinical diagnosis and prognosis in pan-cancer. Materials and Methods: Several biological databases were used to evaluate the expression levels of GJA1 (encoding Cx43) and its diagnostic and prognostic significance in pan-cancer. We targeted kidney renal clear cell carcinoma (KIRC) and investigated the relationship between GJA1 expression and different clinical features of KIRC patients. Then, we performed cell-based experiments to partially confirm our results and predicted several proteins that were functionally related to Cx43. Results: The expression of GJA1 has a high level of accuracy in predicting KIRC. High GJA1 expression was remarkably correlated with a favorable prognosis, and this expression was reduced in groups with poor clinical features in KIRC. Cell experiments confirmed the inhibitory effects of increased GJA1 expression on the migratory capacity of human renal cancer (RCC) cell lines, and protein-protein interaction (PPI) analysis predicted that CDH1 and CTNNB1 were closely related to Cx43. Conclusions: GJA1 could be a promising independent favorable prognostic factor for KIRC, and upregulation of GJA1 expression could inhibit the migratory capacity of renal cancer cells.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Conexina 43 , Neoplasias Renais , Humanos , Conexina 43/análise , Conexina 43/metabolismo , Neoplasias Renais/genética , Biomarcadores Tumorais/análise , Prognóstico , beta Catenina , Linhagem Celular Tumoral , Masculino , Feminino
8.
Cell Rep ; 43(5): 114226, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38733586

RESUMO

Cognitive dysfunction is a feature in multiple sclerosis (MS), a chronic inflammatory demyelinating disorder. A notable aspect of MS brains is hippocampal demyelination, which is closely associated with cognitive decline. However, the mechanisms underlying this phenomenon remain unclear. Chitinase-3-like (CHI3L1), secreted by activated astrocytes, has been identified as a biomarker for MS progression. Our study investigates CHI3L1's function within the demyelinating hippocampus and demonstrates a correlation between CHI3L1 expression and cognitive impairment in patients with MS. Activated astrocytes release CHI3L1 in reaction to induced demyelination, which adversely affects the proliferation and differentiation of neural stem cells and impairs dendritic growth, complexity, and spine formation in neurons. Our findings indicate that the astrocytic deletion of CHI3L1 can mitigate neurogenic deficits and cognitive dysfunction. We showed that CHI3L1 interacts with CRTH2/receptor for advanced glycation end (RAGE) by attenuating ß-catenin signaling. The reactivation of ß-catenin signaling can revitalize neurogenesis, which holds promise for therapy of inflammatory demyelination.


Assuntos
Astrócitos , Proteína 1 Semelhante à Quitinase-3 , Cognição , Hipocampo , Neurogênese , Transdução de Sinais , Proteína 1 Semelhante à Quitinase-3/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Animais , Astrócitos/metabolismo , Humanos , Camundongos , Cognição/fisiologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Masculino , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Feminino , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , beta Catenina/metabolismo , Proliferação de Células , Diferenciação Celular
9.
Cell Oncol (Dordr) ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753154

RESUMO

PURPOSE: Chronic hepatitis B virus (HBV) infection is the primary risk factor for the malignant progression of hepatocellular carcinoma (HCC). It has been reported that HBV X protein (HBx) possesses oncogenic properties, promoting hepatocarcinogenesis and chemoresistance. However, the detailed molecular mechanisms are not fully understood. Here, we aim to investigate the effects of miR-128-3p/SPG21 axis on HBx-induced hepatocarcinogenesis and chemoresistance. METHODS: The expression of SPG21 in HCC was determined using bioinformatics analysis, quantitative real-time PCR (qRT-PCR), western blotting, and immunohistochemistry (IHC). The roles of SPG21 in HCC were elucidated through a series of in vitro and in vivo experiments, including real-time cellular analysis (RTCA), matrigel invasion assay, and xenograft mouse model. Pharmacologic treatment and flow cytometry were performed to demonstrate the potential mechanism of SPG21 in HCC. RESULTS: SPG21 expression was elevated in HCC tissues compared to adjacent non-tumor tissues (NTs). Moreover, higher SPG21 expression correlated with poor overall survival. Functional assays revealed that SPG21 fostered HCC tumorigenesis and invasion. MiR-128-3p, which targeted SPG21, was downregulated in HCC tissues. Subsequent analyses showed that HBx amplified TRPM7-mediated calcium influx via miR-128-3p/SPG21, thereby activating the c-Jun N-terminal kinase (JNK) pathway. Furthermore, HBx inhibited doxorubicin-induced apoptosis by engaging the JNK pathway through miR-128-3p/SPG21. CONCLUSION: The study suggested that SPG21, targeted by miR-128-3p, might be involved in enhancing HBx-induced carcinogenesis and doxorubicin resistance in HCC via the TRPM7/Ca2+/JNK signaling pathway. This insight suggested that SPG21 could be recognized as a potential oncogene, offering a novel perspective on its role as a prognostic factor and a therapeutic target in the context of HCC.

10.
Compr Rev Food Sci Food Saf ; 23(3): e13337, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578124

RESUMO

Whey protein hydrolysates are recognized for their substantial functional and biological properties. Their high digestibility and amino acid composition make them a valuable ingredient to hydrolyzed whey infant formulas, enhancing both product functionality and nutritional values for infant growth. It is important to understand the functional and biological properties of whey protein hydrolysates for their applications in infant formula systems. This review explored preparation methods of whey protein hydrolysates for infant formula-based applications. The effects of whey protein hydrolysate on the physicochemical and biological properties of hydrolyzed whey infant formulas were summarized. The influences of whey protein hydrolysates on the functional and nutritional properties of formulas from manufacturing to infant consumption were discussed. Whey protein hydrolysates are crucial components in the preparation of infant formula, tailored to meet the functional and nutritional demands of the product. The selection of enzyme types and hydrolysis parameters is decisive for obtaining "optimal" whey protein hydrolysates that match the intended characteristics. "Optimal" whey protein hydrolysates offer diverse functionalities, including solubility, emulsification and production stability to hydrolyzed whey infant formulas during manufacturing processes and formulations. They simultaneously promote protein digestibility, infant growth and other potential health benefits, including reduced allergenic potential, as supported by in vitro, in vivo and clinical trials. Overall, the precise selection of enzymes and hydrolysis parameters in the production of whey protein hydrolysates is crucial in achieving the desired characteristics and functional benefits for hydrolyzed whey infant formulas, making them critical in the development of infant nutrition products.


Assuntos
Fórmulas Infantis , Hidrolisados de Proteína , Lactente , Humanos , Fórmulas Infantis/química , Hidrolisados de Proteína/química , Soro do Leite , Proteínas do Soro do Leite/química , Alérgenos
12.
Heliyon ; 10(5): e27282, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463845

RESUMO

Background: Sarcopenia, characterised by an ongoing loss of skeletal muscle mass and reduced strength and function, is frequently observed in patients with non-small cell lung cancer (NSCLC). However, the relationship between sarcopenia and the prognosis of NSCLC treated with immune checkpoint inhibitors (ICIs) remains unclear. This aimed to assess whether sarcopenia is an independent prognostic factor for survival in patients with advanced NSCLC receiving ICIs. Methods: For this retrospective cohort study, we analysed the medical records of patients attending our hospital aged 18-75 years who were newly diagnosed with stage IIIB to stage IV NSCLC, and who had received ICIs as first- or second-line therapy between May 2019 and April 2022. The skeletal muscle index (SMI) was calculated from computed tomography (CT) images and relevant clinical characteristics within 4 weeks of initiating treatment and used to diagnose sarcopenia status. The Kaplan-Meier method and log-rank test were used to calculate and compare patients' progression-free survival (PFS). Cox proportional hazard regression was used to examine the associations between sarcopenia and survival outcomes. The chi-square test was used to compare treatment response outcomes, such as the objective response rate (ORR), disease control rate (DCR), and immunotherapy-related adverse events (irAEs), between individuals with and without sarcopenia. Additionally, the Student's t-test was utilised to compare SMI values between patients by their objective response (OR) and disease control (DC). Finally, the Mann-Whitney U test was used to compare nutritional and inflammatory indicators between the sarcopenia groups. Results: The study enrolled 70 patients, of whom 34 (48.6%) were diagnosed with sarcopenia. The median PFS of patients with and without sarcopenia was 7.5 vs. 13.4 months, respectively (p = 0.006). The proportional hazards regression analysis showed sarcopenia to be an independent prognostic factor for shorter PFS (hazard ratio (HR): 0.504, 95% CI: 0.265-0.962, p = 0.038). Using chi square tests, we found significant differences in the ORR (20.59% vs. 58.33%, p = 0.001) and occurrence of any irAEs (44.1% vs. 22.2%, p = 0.028) between the sarcopenia and the non-sarcopenia groups, respectively. The Student's t-test showed a significant difference in SMI between the ORR group and the non-ORR group (49.99 ± 7.00 vs. 42.98 ± 2.18 cm2/m2, p = 0.0015). While the sarcopenia group were with significantly a lower CD4+/CD8+ ratios and a higher C-reactive protein (CRP) level (p = 0.026, p = 0.011, respectively). Conclusions: This study found that sarcopenia is a significant predictor of a poor prognosis for patients with advanced NSCLC receiving ICIs. Multiple inflammatory and immune functions related to prognosis also differ by sarcopenia status.

13.
Food Chem X ; 21: 101158, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38322762

RESUMO

Research on food-derived immunoregulatory peptides has attracted increasing attention of scientists worldwide. However, the structure-activity relationship of rice immunopeptides was not clearly. Herein, 114 rice immunopeptides were obtained by simulating the enzymatic hydrolysis of rice proteins and were further analyzed by NetMHCIipan-4.0. Subsequently, the molecular docking was used to simulate the binding of immunoreactive peptides to major histocompatibility complex class II (MHC-II) molecules. Results show that S, R, D, E, and T amino acid could easily form hydrogen bonds with MHC-II molecules, thus enhancing innate and adaptive immunity. Finally, glucose-modified rice immunopeptides were to investigate the binding of the peptides with MHC-II molecules after glycosylation modification; this provided a theoretical basis for the targeted modification of the generated immunopeptides. All in all, the present study provides a theoretical foundation to further utilize rice processing byproducts and other food products to enhance immunity.

14.
Food Res Int ; 178: 113935, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309906

RESUMO

Whey proteins are a major group of dairy proteins with high potential for various food based applications. Whey protein isolate has a limited range of functionalities. This functional range can be expanded using diverse modification methods to suit specific applications. This review summarizes the recent advances in the modifications of whey proteins using chemical, physical, and enzymatic methods and their combinations as well as the modification effects on the physicochemical properties. The uses of these modified whey proteins in emulsion based food and beverage systems are described. The limitations in the studies summarized are critically discussed, while future research directions are suggested on how to better utilize whey proteins for emulsion based uses through modifications.


Assuntos
Proteínas do Leite , Proteínas do Soro do Leite , Proteínas do Leite/química , Emulsões , Estudos Prospectivos
15.
Cell Death Dis ; 15(1): 39, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216565

RESUMO

Eukaryotic five-methylcytosine (m5C) is an important regulator of viral RNA splicing, stability, and translation. However, its role in HBV replication remains largely unknown. In this study, functional m5C sites are identified in hepatitis B virus (HBV) mRNA. The m5C modification at nt 1291 is not only indispensable for Aly/REF export factor (ALYREF) recognition to promote viral mRNA export and HBx translation but also for the inhibition of RIG-I binding to suppress interferon-ß (IFN-ß) production. Moreover, NOP2/Sun RNA methyltransferase 2 (NSUN2) catalyzes the addition of m5C to HBV mRNA and is transcriptionally downregulated by the viral protein HBx, which suppresses the binding of EGR1 to the NSUN2 promoter. Additionally, NSUN2 expression correlates with m5C modification of type I IFN mRNA in host cells, thus, positively regulating IFN expression. Hence, the delicate regulation of NSUN2 expression induces m5C modification of HBV mRNA while decreasing the levels of m5C in host IFN mRNA, making it a vital component of the HBV life cycle. These findings provide new molecular insights into the mechanism of HBV-mediated IFN inhibition and may inform the development of new IFN-α based therapies.


Assuntos
Vírus da Hepatite B , Replicação Viral , Vírus da Hepatite B/genética , Replicação Viral/genética , Antivirais/farmacologia , RNA Mensageiro/genética , Epigênese Genética
16.
Proc Natl Acad Sci U S A ; 121(4): e2317058121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232281

RESUMO

Integration of methanogenic archaea with photocatalysts presents a sustainable solution for solar-driven methanogenesis. However, maximizing CH4 conversion efficiency remains challenging due to the intrinsic energy conservation and strictly restricted substrates of methanogenic archaea. Here, we report a solar-driven biotic-abiotic hybrid (biohybrid) system by incorporating cadmium sulfide (CdS) nanoparticles with a rationally designed methanogenic archaeon Methanosarcina acetivorans C2A, in which the glucose synergist protein and glucose kinase, an energy-efficient route for glucose transport and phosphorylation from Zymomonas mobilis, were implemented to facilitate nonnative substrate glucose for methanogenesis. We demonstrate that the photo-excited electrons facilitate membrane-bound electron transport chain, thereby augmenting the Na+ and H+ ion gradients across membrane to enhance adenosine triphosphate (ATP) synthesis. Additionally, this biohybrid system promotes the metabolism of pyruvate to acetyl coenzyme A (AcCoA) and inhibits the flow of AcCoA to the tricarboxylic acid (TCA) cycle, resulting in a 1.26-fold augmentation in CH4 production from glucose-derived carbon. Our results provide a unique strategy for enhancing methanogenesis through rational biohybrid design and reprogramming, which gives a promising avenue for sustainably manufacturing value-added chemicals.


Assuntos
Trifosfato de Adenosina , Metano , Metano/metabolismo , Transporte de Elétrons , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Transporte Biológico , Methanosarcina/metabolismo
17.
Food Chem ; 440: 138060, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38211407

RESUMO

Manuka honey (MH) is a highly prized natural product from the nectar of Leptospermum scoparium flowers. Increased competition on the global market drives MH product innovations. This review updates comparative and non-comparative studies to highlight nutritional, therapeutic, bioengineering, and cosmetic values of MH. MH is a good source of phenolics and unique chemical compounds, such as methylglyoxal, dihydroxyacetone, leptosperin glyoxal, methylsyringate and leptosin. Based on the evidence from in vitro, in vivo and clinical studies, multifunctional bioactive compounds of MH have exhibited anti-oxidative, anti-inflammatory, immunomodulatory, anti-microbial, and anti-cancer activities. There are controversial topics related to MH, such as MH grading, safety/efficacy, implied benefits, and maximum levels of contaminants concerned. Artificial intelligence can optimize MH studies related to chemical analysis, toxicity prediction, multi-functional mechanism exploration and product innovation.


Assuntos
Mel , Mel/análise , Inteligência Artificial , Néctar de Plantas/química , Flores/química , Aldeído Pirúvico/química , Leptospermum/química
18.
Int Urol Nephrol ; 56(3): 1185-1193, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37733125

RESUMO

BACKGROUND: As a novel marker of inflammation, the neutrophil-to-lymphocyte ratio (NLR) has been studied in various diseases. However, NLR in idiopathic membranous nephropathy (IMN) has been rarely studied. We sought to assess the role of NLR in predicting proteinuria remission in IMN. METHODS: This retrospective study involved 561 patients with IMN from January 2018 to December 2022 in Department of Nephrology of Wuhan Central Hospital. All baseline data were collected before the immunosuppressive regiment was administered. The Cox proportional hazards model and Kaplan-Meier curve were applied to assess the prognostic value of NLR for proteinuria remission. RESULTS: The area under the receiver operating characteristic curve revealed that the optimal cut-off NLR value for predicting proteinuria non-remission was 2.63, with a sensitivity and specificity of 58.2% and 72.7%, respectively. Kaplan-Meier curves showed a lower rate of proteinuria remission in patients with high NLR compared with low NLR (Log-rank = 5.04, p = 0.025). Multivariate Cox regression analysis showed that high NLR was an independent risk factor for proteinuria non-remission after adjustment (HR = 1.579, 95% CI 1.052-2.683, p = 0.023). Subgroup analysis indicated that high NLR was a risk factor for proteinuria non-remission especially in IMN patients with 24 h proteinuria ≥ 1 g (HR = 1.818, 95% CI 1.031-2.573, p = 0.012) and chronic kidney disease (CKD) stage 3-4 (HR = 1.935, 95% CI 1.084-2.495, p = 0.015). CONCLUSION: The current study shows that NLR is an independent risk factor for proteinuria non-remission in IMN. More attention should be paid to IMN patients with high NLR, especially for those patients with 24 h proteinuria ≥ 1 g and CKD stage 3-4.


Assuntos
Glomerulonefrite Membranosa , Insuficiência Renal Crônica , Humanos , Glomerulonefrite Membranosa/complicações , Prognóstico , Estudos Retrospectivos , Neutrófilos , Proteinúria/etiologia , Insuficiência Renal Crônica/complicações , Linfócitos
19.
Virol Sin ; 39(1): 31-43, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37690733

RESUMO

Human endogenous retroviruses (HERVs) are remnants of retroviral infections in human germline cells from millions of years ago. Among these, ERVW-1 (also known as HERV-W-ENV, ERVWE1, or ENVW) encodes the envelope protein of the HERV-W family, which contributes to the pathophysiology of schizophrenia. Additionally, neuropathological studies have revealed cell death and disruption of iron homeostasis in the brains of individuals with schizophrenia. Here, our bioinformatics analysis showed that differentially expressed genes in the human prefrontal cortex RNA microarray dataset (GSE53987) were mainly related to ferroptosis and its associated pathways. Clinical data demonstrated significantly lower expression levels of ferroptosis-related genes, particularly Glutathione peroxidase 4 (GPX4) and solute carrier family 3 member 2 (SLC3A2), in schizophrenia patients compared to normal controls. Further in-depth analyses revealed a significant negative correlation between ERVW-1 expression and the levels of GPX4/SLC3A2 in schizophrenia. Studies indicated that ERVW-1 increased iron levels, malondialdehyde (MDA), and transferrin receptor protein 1 (TFR1) expression while decreasing glutathione (GSH) levels and triggering the loss of mitochondrial membrane potential, suggesting that ERVW-1 can induce ferroptosis. Ongoing research has shown that ERVW-1 reduced the expression of GPX4 and SLC3A2 by inhibiting their promoter activities. Moreover, Ferrostatin-1 (Fer-1), the ferroptosis inhibitor, reversed the iron accumulation and mitochondrial membrane potential loss, as well as restored the expressions of ferroptosis markers GSH, MDA, and TFR1 induced by ERVW-1. In conclusion, ERVW-1 could promote ferroptosis by downregulating the expression of GPX4 and SLC3A2, revealing a novel mechanism by which ERVW-1 contributes to neuronal cell death in schizophrenia.


Assuntos
Ferroptose , Esquizofrenia , Humanos , Cadeia Pesada da Proteína-1 Reguladora de Fusão , Ferro , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Esquizofrenia/genética
20.
Chinese Journal of School Health ; (12): 411-413, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1013560

RESUMO

Objective@#To explore the relationship between depressive symptoms, negative life events and resilience among primary and secondary school teachers, so as to provide a reference for mental health promotion in school teachers.@*Methods@#During November to December 2022, a questionnaire survey was conducted using convenient cluster sampling method to select 11 332 in service teachers from 38 schools in 8 provinces (cities) including Beijing, Guangdong, Anhui, Hubei, Sichuan, Xinjiang, Liaoning, and Heilongjiang. The Patient Health Questionnaire-9 items, a self developed 21-item Adverse Life Events questionnaire, and a 10-item Conner-Davidson Resilience Scale were used to assess depressive symptoms, experiences of negative life events, and resilience levels of the teachers, respectively. The relationship between depressive symptoms, negative life events and psychological resilience were analyzed by multiple linear regression and stratified regression.@*Results@#The detection rate of depressive symptoms among primary and secondary school teachers was 14.0%. Negative life events of primary and secondary school teachers were positively correlated with depressive symptoms ( r =0.35), while psychological resilience was negatively correlated with depressive symptoms ( r =-0.45) ( P <0.05). After adjusting for possible covariates including gender and marital status, negative life events were positively correlated with depressive symptoms ( β=0.22, P <0.01). Resilience played a moderating role in the association of negative life events with depressive symptoms among primary and secondary school teachers ( B=-0.15, P <0.01).@*Conclusions@#Negative life events experiences are associated with higher level of depressive symptoms among school teachers. However, resilience might mitigate the negative effects of negative life events on depressive symptoms, playing a protective role in teachers mental health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...