Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(24): 6785-90, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27247390

RESUMO

Peanut or groundnut (Arachis hypogaea L.), a legume of South American origin, has high seed oil content (45-56%) and is a staple crop in semiarid tropical and subtropical regions, partially because of drought tolerance conferred by its geocarpic reproductive strategy. We present a draft genome of the peanut A-genome progenitor, Arachis duranensis, and 50,324 protein-coding gene models. Patterns of gene duplication suggest the peanut lineage has been affected by at least three polyploidizations since the origin of eudicots. Resequencing of synthetic Arachis tetraploids reveals extensive gene conversion in only three seed-to-seed generations since their formation by human hands, indicating that this process begins virtually immediately following polyploid formation. Expansion of some specific gene families suggests roles in the unusual subterranean fructification of Arachis For example, the S1Fa-like transcription factor family has 126 Arachis members, in contrast to no more than five members in other examined plant species, and is more highly expressed in roots and etiolated seedlings than green leaves. The A. duranensis genome provides a major source of candidate genes for fructification, oil biosynthesis, and allergens, expanding knowledge of understudied areas of plant biology and human health impacts of plants, informing peanut genetic improvement and aiding deeper sequencing of Arachis diversity.


Assuntos
Arachis , Genoma de Planta/fisiologia , Família Multigênica/fisiologia , Óleos de Plantas/metabolismo , Proteínas de Plantas , Tetraploidia , Arachis/genética , Arachis/metabolismo , Humanos , Óleo de Amendoim , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Biotechnol J ; 14(5): 1215-24, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26502832

RESUMO

A characteristic feature of peanut is the subterranean fructification, geocarpy, in which the gynophore ('peg'), a specialized organ that transitions from upward growth habit to downward outgrowth upon fertilization, drives the developing pod into the soil for subsequent development underground. As a step towards understanding this phenomenon, we explore the developmental dynamics of the peanut pod transcriptome at 11 successive stages. We identified 110 217 transcripts across developmental stages and quantified their abundance along a pod developmental gradient in pod wall. We found that the majority of transcripts were differentially expressed along the developmental gradient as well as identified temporal programs of gene expression, including hundreds of transcription factors. Thought to be an adaptation to particularly harsh subterranean environments, both up- and down-regulated gene sets in pod wall were enriched for response to a broad array of stimuli, like gravity, light and subterranean environmental factors. We also identified hundreds of transcripts associated with gravitropism and photomorphogenesis, which may be involved in the geocarpy. Collectively, this study forms a transcriptional baseline for geocarpy in peanut as well as provides a considerable body of evidence that transcriptional regulation in peanut aerial and subterranean fruits is complex.


Assuntos
Arachis/genética , Regulação da Expressão Gênica de Plantas , Gravitropismo/genética , Transcriptoma , Arachis/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Ontologia Genética , Proteínas de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Análise de Sequência de RNA
3.
Plant Mol Biol ; 85(4-5): 395-409, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24793121

RESUMO

The peanut is a special plant for its aerial flowering but subterranean fructification. The failure of peg penetration into the soil leads to form aerial pod and finally seed abortion. However, the mechanism of seed abortion during aerial pod development remains obscure. Here, a comparative transcriptome analysis between aerial and subterranean pods at different developmental stages was produced using a customized NimbleGen microarray representing 36,158 unigenes. By comparing 4 consecutive time-points, totally 6,203 differentially expressed genes, 4,732 stage-specific expressed genes and 2,401 specific expressed genes only in aerial or subterranean pods were identified in this study. Functional annotation showed their mainly involvement in biosynthesis, metabolism, transcription regulation, transporting, stress response, photosynthesis, signal transduction, cell division, apoptosis, embryonic development, hormone response and light signaling, etc. Emphasis was focused on hormone response, cell apoptosis, embryonic development and light signaling relative genes. These genes might function as potential candidates to provide insights into seed abortion during aerial pod development. Ten candidate genes were validated by Real-time RT-PCR. Additionally, consistent with up-regulation of auxin response relative genes in aerial pods, endogenous IAA content was also significantly increased by HPLC analysis. This study will further provide new molecular insight that auxin and auxin response genes potentially contribute to peanut seed and pod development.


Assuntos
Arachis/metabolismo , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/fisiologia , Componentes Aéreos da Planta/metabolismo , Transcriptoma , Arachis/genética , Análise por Conglomerados , Análise de Sequência com Séries de Oligonucleotídeos , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sementes/crescimento & desenvolvimento
4.
J Proteomics ; 93: 303-13, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23994445

RESUMO

Peanut (Arachis hypogaea L.) is one of the most important oil-bearing crops in the world. The gravitropic response of peanut gynophores plays an essential role in peanut reproductive development. In this study, we developed an in vitro culture system and applied it to the study of peanut gynophore gravitropism. By comparing the proteomes of gynophores grown in vitro with the tip pointing upward (gravity stimulation sample) and downward (natural growth control) at 6h and 12h, we observed 42 and 39 with significantly altered expression pattern at 6 and 12h, respectively. Out of these proteins, 13 proteins showed same expression profiling at both 6h and 12h. They were identified by MALDI-TOF/TOF and further characterized with quantitative real time RT-PCR. Among the 13 identified proteins, two were identified as class III acidic endochitinases, two were identified as Kunitz trypsin protease inhibitors, and the remaining proteins were identified as pathogenesis-related class 10 protein, Ara h 8 allergen isoform 3, voltage-dependent anion channel, gamma carbonic anhydrase 1, germin-like protein subfamily 3 member 3 precursor, chloride channel, glycine-rich RNA-binding protein and gibberellin receptor GID1. Real time RT-PCR analysis revealed that transcriptional regulation is consistent with expression at the protein level for class III acidic endochitinase, Kunitz trypsin protease inhibitor, chloride channel and pathogenesis-related class 10 protein, while the expression of the other 7 proteins might be regulated at post-transcriptional levels. This study identified several potential gravitropic response proteins in peanut gynophores and helps to understand early gravitropic responses in peanut gynophores. BIOLOGICAL SIGNIFICANCE: The gravitropic response of the peanut gynophores plays an essential role in peanut production. However, the molecular mechanism responsible for gravitropic responses in the peanut gynophores has not been explored yet. The result generated in this study may provide in vitro culture system for gravitropism study of plant gravitropic response and novel insights into the proteome-level response and give a more comprehensive understanding of early gravitropic response in peanut gynophores. This article is part of a Special Issue entitled: Translational Plant Proteomics.


Assuntos
Arachis/genética , Gravitropismo/fisiologia , Proteínas de Plantas/genética , Gravitropismo/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transcriptoma
5.
J Proteomics ; 91: 172-87, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23851312

RESUMO

The peanut plant produces flowers aerially, while develops the fruits and seeds underground. Pod swelling is a vital process of peanut pod and seed development only occurring after the gynophore carrying the ovule into the soil. The failure of gynophore penetration into the soil leads to suppression of pod swelling initiation. However, the molecular mechanism underlying the process remains unknown. A comparative proteome analysis between developing aerial and subterranean pods at various developmental stages was performed using 2-DE approach. 47 significantly differentially expressed spots were selected to further identification by MALDI-TOF-TOF MS. They were corresponded to 31 distinct proteins, suggesting that many identified spots were modified in post-translation. Functional annotation revealed their involvement in twelve important biological processes, such as photosynthesis, oxidative stress response, lignin synthesis, fatty acid biosynthesis, glycolysis, protein catabolic process, cellular metabolic process, regulation process, etc. Furthermore, 10 identified proteins were validated by real-time RT-PCR analysis. Several photosynthesis and oxidative stress proteins displayed elevated expression levels in aerial pods. Otherwise, enzymes in lignin synthesis and ubiquitin proteasome system were down-accumulation in subterranean pods. These enzymes might function as potential candidate proteins and play critical roles to regulate pods swelling and development. BIOLOGICAL SIGNIFICANCE: Pod swelling plays a crucial role in peanut fruit and seed development. However, a large number of aerial pods can't form normal pods due to suppression of swelling initiation by the failure of penetration into the soil, thereby causing to seed yield loss. Limited knowledge is available underlying molecular mechanism regulating initiation of swelling in peg tips and pod development. The results generated in this study may provide evidence for some functional proteins as potential candidates to pod swelling and new molecular insights to improve our understanding of pod development under light and darkness conditions, which may contribute valuable information to high yield breeding in future.


Assuntos
Arachis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Escuridão , Perfilação da Expressão Gênica , Luz , Estresse Oxidativo , Fotossíntese , Proteômica , RNA Mensageiro/metabolismo , Sementes/metabolismo
6.
PLoS One ; 8(4): e61722, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626720

RESUMO

BACKGROUND: Germin-like superfamily members are ubiquitously expressed in various plant species and play important roles in plant development and defense. Although several GLPs have been identified in peanut (Arachis hypogaea L.), their roles in development and defense remain unknown. In this research, we study the spatiotemporal expression of AhGLPs in peanut and their functions in plant defense. RESULTS: We have identified three new AhGLP members (AhGLP3b, AhGLP5b and AhGLP7b) that have distinct but very closely related DNA sequences. The spatial and temporal expression profiles revealed that each peanut GLP gene has its distinct expression pattern in various tissues and developmental stages. This suggests that these genes all have their distinct roles in peanut development. Subcellular location analysis demonstrated that AhGLP2 and 5 undergo a protein transport process after synthesis. The expression of all AhGLPs increased in responding to Aspergillus flavus infection, suggesting AhGLPs' ubiquitous roles in defense to A. flavus. Each AhGLP gene had its unique response to various abiotic stresses (including salt, H2O2 stress and wound), biotic stresses (including leaf spot, mosaic and rust) and plant hormone stimulations (including SA and ABA treatments). These results indicate that AhGLPs have their distinct roles in plant defense. Moreover, in vivo study of AhGLP transgenic Arabidopsis showed that both AhGLP2 and 3 had salt tolerance, which made transgenic Arabidopsis grow well under 100 mM NaCl stress. CONCLUSIONS: For the first time, our study analyzes the AhGLP gene expression profiles in peanut and reveals their roles under various stresses. These results provide an insight into the developmental and defensive roles of GLP gene family in peanut.


Assuntos
Arachis/imunologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Glicoproteínas/imunologia , Doenças das Plantas/imunologia , Folhas de Planta/imunologia , Ácido Abscísico/farmacologia , Arachis/efeitos dos fármacos , Arachis/genética , Arachis/microbiologia , Aspergillus flavus/fisiologia , Perfilação da Expressão Gênica , Glicoproteínas/genética , Interações Hospedeiro-Patógeno , Mutação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/microbiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Transporte Proteico , Salinidade , Tolerância ao Sal , Estresse Fisiológico
7.
Plant Biotechnol J ; 11(1): 115-27, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23130888

RESUMO

The failure of peg penetration into the soil leads to seed abortion in peanut. Knowledge of genes involved in these processes is comparatively deficient. Here, we used RNA-seq to gain insights into transcriptomes of aerial and subterranean pods. More than 2 million transcript reads with an average length of 396 bp were generated from one aerial (AP) and two subterranean (SP1 and SP2) pod libraries using pyrosequencing technology. After assembly, sets of 49 632, 49 952 and 50 494 from a total of 74 974 transcript assembly contigs (TACs) were identified in AP, SP1 and SP2, respectively. A clear linear relationship in the gene expression level was observed between these data sets. In brief, 2194 differentially expressed TACs with a 99.0% true-positive rate were identified, among which 859 and 1068 TACs were up-regulated in aerial and subterranean pods, respectively. Functional analysis showed that putative function based on similarity with proteins catalogued in UniProt and gene ontology term classification could be determined for 59 342 (79.2%) and 42 955 (57.3%) TACs, respectively. A total of 2968 TACs were mapped to 174 KEGG pathways, of which 168 were shared by aerial and subterranean transcriptomes. TACs involved in photosynthesis were significantly up-regulated and enriched in the aerial pod. In addition, two senescence-associated genes were identified as significantly up-regulated in the aerial pod, which potentially contribute to embryo abortion in aerial pods, and in turn, to cessation of swelling. The data set generated in this study provides evidence for some functional genes as robust candidates underlying aerial and subterranean pod development and contributes to an elucidation of the evolutionary implications resulting from fruit development under light and dark conditions.


Assuntos
Arachis/crescimento & desenvolvimento , Arachis/genética , Frutas/crescimento & desenvolvimento , Frutas/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Componentes Aéreos da Planta/crescimento & desenvolvimento , Análise de Sequência de RNA , Transcriptoma
8.
Funct Plant Biol ; 40(12): 1249-1260, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32481192

RESUMO

Peanut (Arachis hypogaea L.) produces flowers aerially, but the fruit develops underground. This process is mediated by the gynophore, which always grows vertically downwards. The genetic basis underlying gravitropic bending of gynophores is not well understood. To identify genes related to gynophore gravitropism, gene expression profiles of gynophores cultured in vitro with tip pointing upward (gravitropic stimulation sample) and downward (control) at both 6 and 12h were compared through a high-density peanut microarray. After gravitropic stimulation, there were 174 differentially expressed genes, including 91 upregulated and 83 downregulated genes at 6h, and 491 differentially expressed genes including 129 upregulated and 362 downregulated genes at 12h. The differentially expressed genes identified were assigned to 24 functional categories. Twenty pathways including carbon fixation, aminoacyl-tRNA biosynthesis, pentose phosphate pathway, starch and sucrose metabolism were identified. The quantitative real-time PCR analysis was performed for validation of microarray results. Our study paves the way to better understand the molecular mechanisms underlying the peanut gynophore gravitropism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...