Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(14): 17485-17494, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36976817

RESUMO

Despite the enormous advancements in nanomedicine research, a limited number of nanoformulations are available on the market, and few have been translated to clinics. An easily scalable, sustainable, and cost-effective manufacturing strategy and long-term stability for storage are crucial for successful translation. Here, we report a system and method to instantly formulate NF achieved with a nanoscale polyelectrolyte coacervate-like system, consisting of anionic pseudopeptide poly(l-lysine isophthalamide) derivatives, polyethylenimine, and doxorubicin (Dox) via simple "mix-and-go" addition of precursor solutions in seconds. The coacervate-like nanosystem shows enhanced intracellular delivery of Dox to patient-derived multidrug-resistant (MDR) cells in 3D tumor spheroids. The results demonstrate the feasibility of an instant drug formulation using a coacervate-like nanosystem. We envisage that this technique can be widely utilized in the nanomedicine field to bypass the special requirement of large-scale production and elongated shelf life of nanomaterials.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Estudos de Viabilidade , Doxorrubicina/farmacologia , Doxorrubicina/química , Neoplasias/patologia , Portadores de Fármacos/química , Nanopartículas/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos
2.
Trends Pharmacol Sci ; 43(9): 709-711, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35659416

RESUMO

Achieving complete nanoparticle (NP) clearance is a key consideration in the design of safe and translatable nanomedicines. Renal-clearable nano formulations must encompass the beneficial nanoscale functionalities whilst exhibiting clearance profiles like those of small-molecule therapeutics. Recent developments in the field have enabled the growth of novel renal-clearable NPs with transformable sizes that take advantage of alternative clearance mechanisms to achieve controlled and efficient renal excretion to improve potential clinical translation.


Assuntos
Nanomedicina , Nanopartículas , Composição de Medicamentos , Humanos
3.
Trends Biotechnol ; 40(10): 1195-1212, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35450779

RESUMO

Despite the great success of vaccines over two centuries, the conventional strategy is based on attenuated/altered microorganisms. However, this is not effective for all microbes and often fails to elicit a protective immune response, and sometimes poses unexpected safety risks. The expanding nano toolbox may overcome some of the roadblocks in vaccine development given the plethora of unique nanoparticle (NP)-based platforms that can successfully induce specific immune responses leading to exciting and novel solutions. Nanovaccines necessitate a thorough understanding of the immunostimulatory effect of these nanotools. We present a comprehensive description of strategies in which nanotools have been used to elicit an immune response and provide a perspective on how nanotechnology can lead to future personalized nanovaccines.


Assuntos
Nanopartículas , Vacinas , Imunidade , Nanotecnologia
4.
ACS Appl Mater Interfaces ; 13(20): 23410-23422, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33978409

RESUMO

Nanomedicine is seen as a potential central player in the delivery of personalized medicine. Biocompatibility issues of nanoparticles have largely been resolved over the past decade. Despite their tremendous progress, less than 1% of applied nanosystems can hit their intended target location, such as a solid tumor, and this remains an obstacle to their full ability and potential with a high translational value. Therefore, achieving immune-tolerable, blood-compatible, and biofriendly nanoparticles remains an unmet need. The translational success of nanoformulations from bench to bedside involves a thorough assessment of their design, compatibility beyond cytotoxicity such as immune toxicity, blood compatibility, and immune-mediated destruction/rejection/clearance profile. Here, we report a one-pot process-engineered synthesis of ultrasmall gold nanoparticles (uGNPs) suitable for better body and renal clearance delivery of their payloads. We have obtained uGNP sizes of as low as 3 nm and have engineered the synthesis to allow them to be accurately sized (almost nanometer by nanometer). The synthesized uGNPs are biocompatible and can easily be functionalized to carry drugs, peptides, antibodies, and other therapeutic molecules. We have performed in vitro cell viability assays, immunotoxicity assays, inflammatory cytokine analysis, a complement activation study, and blood coagulation studies with the uGNPs to confirm their safety. These can help to set up a long-term safety-benefit framework of experimentation to reveal whether any designed nanoparticles are immune-tolerable and can be used as payload carriers for next-generation vaccines, chemotherapeutic drugs, and theranostic agents with better body clearance ability and deep tissue penetration.


Assuntos
Materiais Biocompatíveis , Ouro , Imunidade Inata , Nanopartículas Metálicas , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Coagulação Sanguínea/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ouro/química , Ouro/toxicidade , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/fisiologia , Teste de Materiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Modelos Imunológicos , Citrato de Sódio , Células THP-1 , Taninos
5.
Trends Pharmacol Sci ; 40(6): 403-418, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31076247

RESUMO

Metastasis is a major cause of cancer-related mortality, accounting for 90% of cancer deaths. The explosive growth of cancer biology research has revealed new mechanistic network information and pathways that promote metastasis. Consequently, a large number of antitumor agents have been developed and tested for their antimetastatic efficacy. Despite their exciting cytotoxic effects on tumor cells in vitro and antitumor activities in preclinical studies in vivo, only a few have shown potent antimetastatic activities in clinical trials. In this review, we provide a brief overview of current antimetastatic strategies that show clinical efficacy and review nanotechnology-based approaches that are currently being incorporated into these therapies to mitigate challenges associated with treating cancer metastasis.


Assuntos
Antineoplásicos/administração & dosagem , Nanomedicina/métodos , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Antineoplásicos/química , Ensaios Clínicos como Assunto , Humanos , Micelas , Nanopartículas/química , Metástase Neoplásica , Neoplasias/irrigação sanguínea , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia
6.
Chem Commun (Camb) ; 55(49): 6964-6996, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31140997

RESUMO

Noble metals comprise any of several metallic chemical elements that are outstandingly resistant to corrosion and oxidation, even at elevated temperatures. This group is not strictly defined, but the tentative list includes ruthenium, rhodium, palladium, silver, osmium, iridium, platinum and gold, in order of atomic number. The emerging properties of noble metal nanoparticles are attracting huge interest from the translational scientific community and have led to an unprecedented expansion of research and exploration of applications in biotechnology and biomedicine. Noble metal nanomaterials can be synthesised both by top-down and bottom up approaches, as well as via organism-assisted routes, and subsequently modified appropriately for the field of use. Nanoscale analogues of gold, silver, platinum, and palladium in particular, have gained primary importance owing to their excellent intrinsic properties and diversity of applications; they offer unique functional attributes, which are quite unlike the bulk material. Modulation of noble metal nanoparticles in terms of size, shape and surface functionalisation has endowed them with unusual capabilities and manipulation at the chemical level, which can lead to changes in their electrical, chemical, optical, spectral and other intrinsic properties. Such flexibility in multi-functionalisation delivers 'Ockham's razor' to applied biomedical science. In this feature article, we highlight recent advances in the adaptation of noble metal nanomaterials and their biomedical applications in therapeutics, diagnostics and sensing.


Assuntos
Antibacterianos/química , Antifúngicos/química , Pesquisa Biomédica , Nanopartículas Metálicas/química , Metais Pesados/química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Humanos , Metais Pesados/farmacologia , Ressonância de Plasmônio de Superfície
7.
Langmuir ; 34(16): 4722-4731, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29589945

RESUMO

Slippery liquid-infused porous surfaces (SLIPS) have potential impact on a wide range of industries, including healthcare, food packaging, and automobile. A tremendouseffort has been focused on developing novel fabrication methods for making SLIPS. However, current fabrication methods usually involve harsh conditions and complicated postfabrication modifications or are limited to specific substrates. Presented here is a novel method for the fast and facile fabrication of SLIPS. Layer-by-layer (LBL) assembly of branched polyethylenimine and Nafion, a perfluorinated polyelectrolyte, is performed with methanol as the solvent. Hierarchically rough and superhydrophobic surface is obtained directly without further modification on various substrates. The surface properties are shown to highly depend on the LBL assembly parameters, including deposition cycles, dipping time, rinsing time, and drying time between baths. The polyelectrolyte multilayers obtained with this method are infused with Krytox 100 to form SLIPS surfaces, which show excellent omniphobic, antifouling, self-cleaning, flexible, and optical properties. The result of this study not only simplifies the fabrication of SLIPS surfaces, but also provides great insight for making LBL films with specific morphologies.

8.
Adv Mater ; 29(3)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27859710

RESUMO

The development of a multimaterial extrusion bioprinting platform is reported. This platform is capable of depositing multiple coded bioinks in a continuous manner with fast and smooth switching among different reservoirs for rapid fabrication of complex constructs, through digitally controlled extrusion of bioinks from a single printhead consisting of bundled capillaries synergized with programmed movement of the motorized stage.


Assuntos
Bioimpressão , Engenharia Tecidual , Alicerces Teciduais
9.
ACS Appl Mater Interfaces ; 8(39): 26258-26265, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27599096

RESUMO

Self-healing materials are an emerging class of modern materials gaining importance due to environmental and energy concerns. Materials based on the complexation of oppositely charged polyelectrolytes, usually in the form of coatings and films, have been shown to have water activated self-healing properties. In this work, the self-healing of bulk branched poly(ethylene imine) and poly(acrylic acid) (BPEI/PAA) complex is studied as a function of the aqueous solutions used to activate the self-healing. Specifically, exposure to different salt solutions and solutions of different pH was examined including sodium and copper ion containing solutions as well as acidic and basic solutions. By applying NaCl treatment, especially followed by exposure to DI water, the self-healing ability of the BPEI/PAA complex was enhanced. In contrast, after treated by CuCl2, the BPEI/PAA complex lost its self-healing ability, showing an ability to modulate the ability to self-heal as a function of external stimulus. In addition to improving the ability to self-heal using salt as compared to using DI water alone, acidic and basic solutions can also improve the ability to self-heal. The self-healing is caused by chain mobility at the cut interface of the polyelectrolyte complex material which is controlled by charge density along the polyelectrolyte backbone as well as ionic cross-link density, and correlation between this mobility to rheological behavior is made. Tensile testing and determination of fracture toughness were used to characterize self-healing.

10.
ACS Catal ; 6(5): 3340-3348, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-27175308

RESUMO

2,2'-Bipyridine (bpy), 1,10-phenanthroline (phen) and related bidentate ligands often inhibit homogeneous Pd-catalyzed aerobic oxidation reactions; however, certain derivatives, such as 4,5-diazafluoren-9-one (DAF), can promote catalysis. In order to gain insight into this divergent ligand behavior, eight different bpy- and phen-derived chelating ligands have been evaluated in Pd(OAc)2-catalyzed oxidative cyclization of (E)-4-hexenyltosylamide. Two of the ligands, DAF and 6,6'-dimethyl-2,2'-bipyridine (6,6'-Me2bpy), support efficient catalytic turnover, while the others strongly inhibit the reaction. DAF is especially effective and is the only ligand that exhibits "ligand-accelerated catalysis". Evidence suggests that the utility of DAF and 6,6'-Me2bpy originates from the ability of these ligands to access κ1-coordination modes via dissociation of one of the pyridyl rings. This hemilabile character is directly observed by NMR spectroscopy upon adding one equivalent of pyridine to solutions of 1:1 L/Pd(OAc)2 (L = DAF and 6,6'-Me2bpy), and is further supported by an X-ray crystal structure of Pd(py)(κ1-DAF)OAc2. DFT computational studies illuminate the influence of three different chelating ligands [DAF, 6,6'-Me2bpy, and 2,9-dimethyl-1,10-phenanthroline (2,9-Me2phen)] on the energetics of the aza-Wacker reaction pathway. The results show that DAF and 6,6'-Me2bpy destabilize the corresponding ground-state Pd(N~N)(OAc)2 complexes, while stabilizing the rate-limiting transition state for alkene insertion into a Pd-N bond. Interconversion between κ2- and κ1-coordination modes facilitate access to open coordination sites at the PdII center. The insights from these studies introduce new ligand concepts that could promote numerous other classes of Pd-catalyzed aerobic oxidation reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...