Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomedicine (Lond) ; : 1-13, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016060

RESUMO

Aim: To evaluate a liposome complex conjugated with anti-epidermal growth factor receptor (EGFR) antibodies for the treatment of pre-eclampsia (PE). Methods: In in vitro experiments, the transfection rate, silencing effect and cytotoxicity were determined. In the in vivo PE model, the siRNA distribution, mean arterial pressure, 24-h urine protein concentration, serum sFlt1 concentration, number of viable fetuses and placental weight were measured. Results: The nanomedicine effectively reduced the expression of sFIt1 and had a strong ability to target placental tissues. It could significantly reduce the symptoms of pre-eclampsia and improve pregnancy outcomes in PE model rats. Conclusion: The constructed nanomedicine can improve pregnancy outcomes in a rat model of pre-eclampsia and provides a new strategy for the treatment of pre-eclampsia.


[Box: see text].

2.
Int J Biol Macromol ; 275(Pt 1): 133523, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38945336

RESUMO

Human pancreatic lipase (hPL) is a vital digestive enzyme responsible for breaking down dietary fats in humans, inhibiting hPL is a feasible strategy for preventing and treating obesity. This study aims to investigate the structure-activity relationships (SARs) of flavonoids as hPL inhibitors, and to find potent hPL inhibitors from natural and synthetic flavonoids. In this work, the anti-hPL effects of forty-nine structurally diverse naturally occurring flavonoids were assessed and the SARs were summarized. The results demonstrated that the pyrogallol group on the A ring was a key moiety for hPL inhibition. Subsequently, a series of baicalein derivatives were synthesized, while 4'-amino baicalein (ABA) and 4'-pyrrolidine baicalein (PBA) were identified as novel potent hPL inhibitors (IC50 < 1 µM). Further investigations showed that scutellarein, ABA and PBA potently inhibited hPL in a non-competitive manner (Ki < 1 µM). Among all tested flavonoids, PBA showed the most potent anti-hPL effect in vitro, while this agent also exhibited favorable safety profiles, unique tissue distribution (high exposure level to intestinal system but low exposure levels to deep organs) and impressive in vivo effects for lowering blood triglyceride levels in mice. Collectively, this work uncovers the SARs of flavonoids against hPL, while a newly synthetic flavonoid (PBA) emerges as a potent hPL inhibitor with favorable safety profiles and impressive anti-hPL effects in vivo.

3.
J Med Chem ; 67(9): 7504-7515, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38640354

RESUMO

Food allergy (FA) poses a growing global food safety concern, yet no effective cure exists in clinics. Previously, we discovered a potent antifood allergy compound, butyrolactone I (BTL-I, 1), from the deep sea. Unfortunately, it has a very low exposure and poor pharmacokinetic (PK) profile in rats. Therefore, a series of structural optimizations toward the metabolic pathways of BTL-I were conducted to provide 18 derives (2-19). Among them, BTL-MK (19) showed superior antiallergic activity and favorable pharmacokinetics compared to BTL-I, being twice as potent with a clearance (CL) rate of only 0.5% that of BTL-I. By oral administration, Cmax and area under the concentration-time curve (AUC0-∞) were 565 and 204 times higher than those of BTL-I, respectively. These findings suggest that butyrolactone methyl ketone (BTL-BK) could serve as a drug candidate for the treatment of FAs and offer valuable insights into optimizing the druggability of lead compounds.


Assuntos
4-Butirolactona , Antialérgicos , Animais , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , 4-Butirolactona/química , 4-Butirolactona/farmacocinética , 4-Butirolactona/administração & dosagem , Administração Oral , Ratos , Humanos , Antialérgicos/farmacocinética , Antialérgicos/farmacologia , Antialérgicos/química , Antialérgicos/administração & dosagem , Relação Estrutura-Atividade , Masculino , Ratos Sprague-Dawley , Disponibilidade Biológica , Hipersensibilidade Alimentar/tratamento farmacológico , Camundongos
4.
Langenbecks Arch Surg ; 409(1): 138, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676783

RESUMO

PURPOSE: Treating an infiltration of the recurrent laryngeal nerve (RLN) by thyroid carcinoma remains a subject of ongoing debate. Therefore, this study aims to provide a novel strategy for intraoperative phenosurgical management of RLN infiltrated by thyroid carcinoma. METHODS: Forty-two patients with thyroid carcinoma infiltrating the RLN were recruited for this study and divided into three groups. Group A comprised six individuals with medullary thyroid cancer who underwent RLN resection and arytenoid adduction. Group B consisted of 29 differentiated thyroid cancer (DTC)patients who underwent RLN resection and ansa cervicalis (ACN)-to-RLN anastomosis. Group C included seven patients whose RLN was preserved. RESULTS: The videostroboscopic analysis and voice assessment collectively indicated substantial improvements in voice quality for patients in Groups A and B one year post-surgery. Additionally, the shaving technique maintained a normal or near-normal voice in Group C one year post-surgery. CONCLUSION: The new intraoperative phonosurgical strategy is as follows: Resection of the affected RLN and arytenoid adduction is required in cases of medullary or anaplastic carcinoma, regardless of preoperative RLN function. Suppose RLN is found infiltrated by well-differentiated thyroid cancer (WDTC) during surgery, and the RLN is preoperatively paralyzed, we recommend performing resection the involved RLN and ACN-to-RLN anastomosis immediately during surgery. If vocal folds exhibit normal mobility preoperatively, the MACIS scoring system is used to assess patient risk stratification. When the MACIS score > 6.99, resection of the involved RLN and immediate ACN-to-RLN anastomosis were performed. RLN preservation was limited to patients with MACIS scores ≤ 6.99.


Assuntos
Nervo Laríngeo Recorrente , Neoplasias da Glândula Tireoide , Tireoidectomia , Humanos , Neoplasias da Glândula Tireoide/cirurgia , Neoplasias da Glândula Tireoide/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Nervo Laríngeo Recorrente/cirurgia , Tireoidectomia/métodos , Paralisia das Pregas Vocais/etiologia , Paralisia das Pregas Vocais/cirurgia , Idoso , Qualidade da Voz , Invasividade Neoplásica/patologia , Resultado do Tratamento
5.
Food Funct ; 15(10): 5287-5299, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38639730

RESUMO

Catechol-O-methyltransferase (COMT) plays a central role in the metabolic inactivation of endogenous neurotransmitters and xenobiotic drugs and hormones having catecholic structures. Its inhibitors are used in clinical practice to treat Parkinson's disease. In this study, a fluorescence-based visualization inhibitor screening method was developed to assess the inhibition activity on COMT both in vitro and in living cells. Following the screening of 94 natural products, Pu-erh tea extract exhibited the most potent inhibitory effect on COMT with an IC50 value of 0.34 µg mL-1. In vivo experiments revealed that Pu-erh tea extract substantially hindered COMT-mediated levodopa metabolism in rats, resulting in a significant increase in levodopa levels and a notable decrease in 3-O-methyldopa in plasma. Subsequently, the chemical components of Pu-erh tea were analyzed using UHPLC-Q-Exactive Orbitrap HRMS, identifying 24 major components. Among them, epigallocatechin gallate, gallocatechin gallate, epicatechin gallate, and catechin gallate exhibited potent inhibition of COMT activity with IC50 values from 93.7 nM to 125.8 nM and were the main bioactive constituents in Pu-erh tea responsible for its COMT inhibition effect. Inhibition kinetics analyses and docking simulations revealed that these compounds competitively inhibit COMT-mediated O-methylation at the catechol site. Overall, this study not only explained how Pu-erh tea catechins inhibit COMT, suggesting Pu-erh tea as a potential dietary intervention for Parkinson's disease, but also introduced a new strategy for discovering COMT inhibitors more effectively.


Assuntos
Catequina , Inibidores de Catecol O-Metiltransferase , Catecol O-Metiltransferase , Levodopa , Extratos Vegetais , Ratos Sprague-Dawley , Chá , Animais , Ratos , Inibidores de Catecol O-Metiltransferase/farmacologia , Catecol O-Metiltransferase/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química , Levodopa/metabolismo , Chá/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Masculino , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Camellia sinensis/química , Simulação de Acoplamento Molecular
6.
J Ethnopharmacol ; 328: 118116, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548118

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aristolochic acids (AAs) are naturally occurring nitro phenanthrene carboxylic acids primarily found in plants of the Aristolochiaceae family. Aristolochic acid D (AAD) is a major constituent in the roots and rhizomes of the Chinese herb Xixin (the roots and rhizomes of Asarum heterotropoides F. Schmidt), which is a key material for preparing a suite of marketed Chinese medicines. Structurally, AAD is nearly identical to the nephrotoxic aristolochic acid I (AAI), with an additional phenolic group at the C-6 site. Although the nephrotoxicity and metabolic pathways of AAI have been well-investigated, the metabolic pathway(s) of AAD in humans and the influence of AAD metabolism on its nephrotoxicity has not been investigated yet. AIM OF THE STUDY: To identify the major metabolites of AAD in human tissues and to characterize AAD O-glucuronidation kinetics in different enzyme sources, as well as to explore the influence of AAD O-glucuronidation on its nephrotoxicity. MATERIALS AND METHODS: The O-glucuronide of AAD was biosynthesized and its chemical structure was fully characterized by both 1H-NMR and 13C-NMR. Reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses were conducted to assess the crucial enzymes involved in AAD O-glucuronidation in humans. Docking simulations were performed to mimic the catalytic conformations of AAD in human UDP-glucuronosyltransferases (UGTs), while the predicted binding energies and distances between the deprotonated C-6 phenolic group of AAD and the glucuronyl moiety of UDPGA in each tested human UGT isoenzyme were measured. The mitochondrial membrane potentials (MMP) and reactive oxygen species (ROS) levels in HK-2 cells treated with either AAI, or AAD, or AAD O-glucuronide were tested, to elucidate the impact of O-glucuronidation on the nephrotoxicity of AAD. RESULTS: AAD could be rapidly metabolized in human liver and intestinal microsomes (HLM and HIM, respectively) to form a mono-glucuronide, which was purified and fully characterized as AAD-6-O-ß-D-glucuronide (AADG) by NMR. UGT1A1 was the predominant enzyme responsible for AAD-6-O-glucuronidation, while UGT1A9 contributed to a lesser extent. AAD-6-O-glucuronidation in HLM, HIM, UGT1A1 and UGT1A9 followed Michaelis-Menten kinetics, with the Km values of 4.27 µM, 9.05 µM, 3.87 µM, and 7.00 µM, respectively. Docking simulations suggested that AAD was accessible to the catalytic cavity of UGT1A1 or UGT1A9 and formed catalytic conformations. Further investigations showed that both AAI and AAD could trigger the elevated intracellular ROS levels and induce mitochondrial dysfunction and in HK-2 cells, but AADG was hardly to trigger ROS accumulation and mitochondrial dysfunction. CONCLUSION: Collectively, UGT1A-catalyzed AAD 6-O-glucuronidation represents a crucial detoxification pathway of this naturally occurring AAI analogs in humans, which is very different from that of AAI.


Assuntos
Ácidos Aristolóquicos , Doenças Mitocondriais , Humanos , Ácidos Aristolóquicos/toxicidade , Glucuronídeos/metabolismo , Microssomos Hepáticos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glucuronosiltransferase/metabolismo , Cinética , Catálise , Difosfato de Uridina/metabolismo
7.
Int J Biol Macromol ; 267(Pt 1): 131150, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556236

RESUMO

Gut microbial ß-glucuronidases (gmß-GUS) played crucial roles in regulating a variety of endogenous substances and xenobiotics on the circulating level, thus had been recognized as key modulators of drug toxicity and human diseases. Inhibition or inactivation of gmß-GUS enzymes has become a promising therapeutic strategy to alleviate drug-induced intestinal toxicity. Herein, the Rhodiola crenulata extract (RCE) was found with potent and broad-spectrum inhibition on multiple gmß-GUS enzymes. Subsequently, the anti-gmß-GUS activities of the major constituents in RCE were tested and the results showed that 1,2,3,4,6-penta-O-galloyl-ß-d-glucopyranose (PGG) acted as a strong and broad-spectrum inhibitor on multiple gmß-GUS (including EcGUS, CpGUS, SaGUS, and EeGUS). Inhibition kinetic assays demonstrated that PGG effectively inhibited four gmß-GUS in a non-competitive manner, with the Ki values ranging from 0.12 µM to 1.29 µM. Docking simulations showed that PGG could tightly bound to the non-catalytic sites of various gmß-GUS, mainly via hydrogen bonding and aromatic interactions. It was also found that PGG could strongly inhibit the total gmß-GUS activity in mice feces, with the IC50 value of 1.24 µM. Collectively, our findings revealed that RCE and its constituent PGG could strongly inhibit multiple gmß-GUS enzymes, suggesting that RCE and PGG could be used for alleviating gmß-GUS associated enterotoxicity.


Assuntos
Inibidores Enzimáticos , Microbioma Gastrointestinal , Simulação de Acoplamento Molecular , Rhodiola , Rhodiola/química , Animais , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Medicina Tradicional Tibetana , Cinética , Masculino
8.
Phytomedicine ; 126: 155458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394733

RESUMO

BACKGROUND: As a canonical iron-dependent form of regulated cell death (RCD), ferroptosis plays a crucial role in chemical-induced liver injuries. Previous studies have demonstrated that xanthohumol (Xh), a natural prenylflavonoid isolated from hops, exhibits anti-inflammatory, anti-antioxidative and hepatoprotective properties. However, the regulatory effects of Xh on hepatic ferroptosis and the underlying mechanism have not yet been fully elucidated. PURPOSE: To investigate the hepatoprotective effects of Xh against drug-induced liver injury (DILI) and the regulatory effects of Xh on hepatic ferroptosis, as well as to reveal the underlying molecular mechanisms. METHODS/STUDY DESIGN: The hepatoprotective benefits of Xh were investigated in APAP-induced liver injury (AILI) mice and HepaRG cells. Xh was administered intraperitoneally to assess its in vivo effects. Histological and biochemical studies were carried out to evaluate liver damage. A series of ferroptosis-related markers, including intracellular Fe2+ levels, ROS and GSH levels, the levels of MDA, LPO and 4-HNE, as well as the expression levels of ferroptosis-related proteins and modulators were quantified both in vivo and in vitro. The modified peptides of Keap1 by Xh were characterized utilizing nano LC-MS/MS. RESULTS: Xh remarkably suppresses hepatic ferroptosis and ameliorates AILI both in vitro and in vivo, via suppressing Fe2+ accumulation, ROS formation, MDA generation and GSH depletion, these observations could be considerably mitigated by the ferroptosis inhibitor ferrostatin-1 (Fer-1). Mechanistically, Xh could significantly activate the Nrf2/xCT/GPX4 signaling pathway to counteract AILI-induced hepatocyte ferroptosis. Further investigations showed that Xh could covalently modify three functional cysteine residues (cys151, 273, 288) of Keap1, which in turn, reduced the ubiquitination rates of Nrf2 and prolonged its degradation half-life. CONCLUSIONS: Xh evidently suppresses hepatic ferroptosis and ameliorates AILI via covalent modifying three key cysteines of Keap1 and activating Nrf2/xCT/GPX4 signaling pathway.


Assuntos
Ferroptose , Flavonoides , Propiofenonas , Animais , Camundongos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Espectrometria de Massas em Tandem , Fígado , Transdução de Sinais , Cisteína
9.
Nat Commun ; 15(1): 1119, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321010

RESUMO

The metasurface platform with time-varying characteristics has emerged as a promising avenue for exploring exotic physics associated with Floquet materials and for designing photonic devices like linear frequency converters. However, the limited availability of materials with ultrafast responses hinders their applications in the terahertz range. Here we present a time-varying metasurface comprising an array of superconductor-metal hybrid meta-molecules. Each meta-molecule consists of two meta-atoms that are "bonded" together by double superconducting microbridges. Through experimental investigations, we demonstrate high-efficiency linear terahertz frequency conversion by rapidly breaking the bond using a coherent ultrashort terahertz pump pulse. The frequency and relative phase of the converted wave exhibit strong dependence on the pump-probe delay, indicating phase controllable wave conversion. The dynamics of the meta-molecules during the frequency conversion process are comprehensively understood using a time-varying coupled mode model. This research not only opens up new possibilities for developing innovative terahertz sources but also provides opportunities for exploring topological dynamics and Floquet physics within metasurfaces.

10.
J Med Virol ; 95(11): e29208, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37947293

RESUMO

The main proteases (Mpro ) are highly conserved cysteine-rich proteins that can be covalently modified by numerous natural and synthetic compounds. Herein, we constructed an integrative approach to efficiently discover covalent inhibitors of Mpro from complex herbal matrices. This work begins with biological screening of 60 clinically used antiviral herbal medicines, among which Lonicera japonica Flos (LJF) demonstrated the strongest anti-Mpro effect (IC50 = 37.82 µg/mL). Mass spectrometry (MS)-based chemical analysis and chemoproteomic profiling revealed that LJF extract contains at least 50 constituents, of which 22 exhibited the capability to covalently modify Mpro . We subsequently verified the anti-Mpro effects of these covalent binders. Gallic acid and quercetin were found to potently inhibit severe acute respiratory syndrome coronavirus 2 Mpro in dose- and time- dependent manners, with the IC50 values below 10 µM. The inactivation kinetics, binding affinity and binding mode of gallic acid and quercetin were further characterized by fluorescence resonance energy transfer, surface plasmon resonance, and covalent docking simulations. Overall, this study established a practical approach for efficiently discovering the covalent inhibitors of Mpro from herbal medicines by integrating target-based high-throughput screening and MS-based assays, which would greatly facilitate the discovery of key antiviral constituents from medicinal plants.


Assuntos
COVID-19 , Plantas Medicinais , Humanos , SARS-CoV-2 , Ensaios de Triagem em Larga Escala , Quercetina/farmacologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Extratos Vegetais/farmacologia , Antivirais/farmacologia , Antivirais/química , Ácido Gálico/farmacologia , Simulação de Acoplamento Molecular
11.
Sci Rep ; 13(1): 18763, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907576

RESUMO

The role of 5-methylcytosine (m5C) in tumor initiation and progression has been increasingly recognized. However, the precise association between the regulation of m5C and the progression, metastasis, and prognosis of head and neck squamous cell carcinoma (HNSCC) has not yet been fully explored. Data from 545 HNSCC patients obtained from The Cancer Genome Atlas (TCGA) database were analyzed. Unsupervised cluster analysis was conducted using the expression levels of m5C regulatory genes. Additionally, gene set variation analysis (GSVA), single-sample gene set enrichment analysis (ssGSEA), and Cox regression analysis were utilized. Quantitative reverse transcription polymerase chain reaction (RT-qPCR), colony formation assay, transwell experiments and western blots were performed in the HNSCC cell line UM-SCC-17B to assess the expression and functional role of one of the novel signatures, CNFN. Significant expression differences were found in m5C regulatory genes between tumor and normal tissues in HNSCC. Two distinct m5C modification patterns, characterized by substantial prognostic differences, were identified. Cluster-2, which exhibited a strong association with epithelial-mesenchymal transition (EMT), was found to be associated with a poorer prognosis. Based on the m5C clusters and EMT status, differentially expressed genes (DEGs) were identified. Using DEGs, an 8-gene signature (CAMK2N1, WNT7A, F2RL1, AREG, DEFB1, CNFN, TGFBI, and CAV1) was established to develop a prognostic model. The performance of this signature was validated in both the training and external validation datasets, demonstrating its promising efficacy. Furthermore, additional investigations using RT-qPCR on clinical specimens and experimental assays in cell lines provided compelling evidence suggesting that CNFN, one of the genes in the signature, could play a role in HNSCC progression and metastasis through the EMT pathway. This study highlighted the role of m5C in HNSCC progression and metastasis. The relationship between m5C and EMT has been elucidated for the first time. A robust prognostic model was developed for accurately predicting HNSCC patients' survival outcomes. Potential molecular mechanisms underlying these associations have been illuminated through this research.


Assuntos
Neoplasias de Cabeça e Pescoço , beta-Defensinas , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/genética , Prognóstico , Transição Epitelial-Mesenquimal/genética , Metilação , Proteínas
12.
Eur J Med Chem ; 259: 115708, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37544184

RESUMO

Human carboxylesterase 2A (hCES2A), the most abundant carboxylesterase in the human gut, plays a crucial role in the metabolic clearance and activation of various ester-bearing drugs, environmental toxins and carcinogens. Inhibition of intestinal hCES2A can alleviate irinotecan-induced gut toxicity and modulate the oral bioavailability of hCES2A-substrate drugs. Bysspectin A, a natural product isolated from the endophytic fungus Byssochlamys spectabilis, has been identified as a highly selective hCES2A inhibitor. Herein, two sets of bysspectin A derivatives have been designed and synthesized, utilizing a Cu-catalyzed domino Sonogashira-cyclization as the key step. Following two rounds of structure activity relationship (SAR) studies and structural optimizations, compound 20w was identified as the most potent hCES2A inhibitor, with an IC50 value of 1.6 nM, an approximately 1000-fold improvement over bysspectin A. Further investigation showed that 20w potently inhibited hCES2A in a mixed inhibition manner, while this agent could also potently inhibit intracellular hCES2A in living cells and exhibited suitable metabolic stability. In summary, our findings demonstrate that a new bysspectin A derivative (20w) is a promising candidate for the development of clinically used hCES2A inhibitor.


Assuntos
Inibidores Enzimáticos , Policetídeos , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Carboxilesterase , Relação Estrutura-Atividade , Irinotecano
13.
Bioorg Med Chem Lett ; 95: 129435, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549850

RESUMO

Human cytochrome P450 3A4 (hCYP3A4), one of the most important drug-metabolizing enzymes, catalyze the metabolic clearance of ∼50% therapeutic drugs. CYP3A4 inhibitors have been used for improving the in vivo efficacy of hCYP3A4-substrate drugs. However, most of existing hCYP3A4 inhibitors may trigger serious adverse effects or undesirable effects on endogenous metabolism. This study aimed to discover potent and orally active hCYP3A4 inhibitors from chalcone derivatives and to test their anti-hCYP3A4 effects both in vitro and in vivo. Following three rounds of screening and structural optimization, the isoquinoline chalcones were found with excellently anti-hCYP3A4 effects. SAR studies showed that introducing an isoquinoline ring on the A-ring significantly enhanced anti-CYP3A4 effect, generating A10 (IC50 = 102.10 nM) as a promising lead compound. The 2nd round of SAR studies showed that introducing a substituent group at the para position of the carbonyl group on B-ring strongly improved the anti-CYP3A4 effect. As a result, C6 was identified as the most potent hCYP3A4 inhibitor (IC50 = 43.93 nM) in human liver microsomes (HLMs). C6 also displayed potent anti-hCYP3A4 effect in living cells (IC50 = 153.00 nM), which was superior to the positive inhibitor ketoconazole (IC50 = 251.00 nM). Mechanistic studies revealed that C6 could potently inhibit CYP3A4-catalyzed N-ethyl-1,8-naphthalimide (NEN) hydroxylation in a competitive manner (Ki = 30.00 nM). Moreover, C6 exhibited suitable metabolic stability in HLMs and showed good safety profiles in mice. In vivo tests demonstrated that C6 (100 mg/kg, orally administration) significantly increased the AUC(0-inf) of midazolam by 3.63-fold, and strongly prolonged its half-life by 1.66-fold compared with the vehicle group in mice. Collectively, our findings revealed the SARs of chalcone derivatives as hCYP3A4 inhibitors and offered several potent chalcone-type hCYP3A4 inhibitors, while C6 could serve as a good lead compound for developing novel, orally active CYP3A4 inhibitors with improved druglikeness properties.

14.
Int J Biol Sci ; 19(11): 3360-3382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496997

RESUMO

Targeted therapies in cancer treatment can improve in vivo efficacy and reduce adverse effects by altering the tissue exposure of specific biomolecules. However, there are still large number of target proteins in cancer are still undruggable, owing to the following factors including (1) lack of ligand-binding pockets, (2) function based on protein-protein interactions (PPIs), (3) the highly specific conserved active sites among protein family members, and (4) the variability of tertiary docking structures. The current status of undruggable targets proteins such as KRAS, TP53, C-MYC, PTP, are carefully introduced in this review. Some novel techniques and drug designing strategies have been applicated for overcoming these undruggable proteins, and the most classic and well-known technology is proteolysis targeting chimeras (PROTACs). In this review, the novel drug development strategies including targeting protein degradation, targeting PPI, targeting intrinsically disordered regions, as well as targeting protein-DNA binding are described, and we also discuss the potential of these strategies for overcoming the undruggable targets. Besides, intelligence-assisted technologies like Alpha-Fold help us a lot to predict the protein structure, which is beneficial for drug development. The discovery of new targets and the development of drugs targeting them, especially those undruggable targets, remain a huge challenge. New drug development strategies, better extraction processes that do not disrupt protein-protein interactions, and more precise artificial intelligence technologies may provide significant assistance in overcoming these undruggable targets.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Proteínas/metabolismo , Proteólise , Neoplasias/tratamento farmacológico , Descoberta de Drogas
15.
Eur J Med Chem ; 258: 115552, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315474

RESUMO

Human cytochrome P450 1B1 (hCYP1B1), an extrahepatic cytochrome P450 enzyme over-expressed in various tumors, has been validated as a promising target for preventing and treating cancers. Herein, two series of chalcone derivatives were synthesized to discover potent hCYP1B1 inhibitors without AhR agonist effect. Structure-activity relationship (SAR) studies demonstrated that 4'-trifluoromethyl on the B-ring strongly enhanced the anti-hCYP1B1 effects, identifying A9 as a promising lead compound. Further SAR analysis on A9 derivatives (modified A-ring of 4'-trifluoromethylchalcone) showed that introducing 2-methoxyl improved the anti-hCYP1B1 effect and selectivity, while introducing a methoxyl at the C-4 site was beneficial for avoiding AhR activation. Ultimately, five 4'-trifluoromethyl chalcones were identified as potent hCYP1B1 inhibitors (IC50 < 10 nM), while B18 exhibits the most potent anti-hCYP1B1 effect (IC50 = 3.6 nM), suitable metabolic stability and good cell-permeability. B18 also acted as an AhR antagonist and could down-regulate hCYP1B1 in living systems. Mechanistic studies showed that B18 potently inhibited hCYP1B1 in a competitive inhibition manner (Ki = 3.92 nM), while docking simulations revealed that B18 could tightly bind to the catalytic cavity of hCYP1B1 mainly via hydrophobic and hydrogen-bonding interactions. Furthermore, B18 could potently inhibit hCYP1B1 in living cells and showed remarkable anti-migration ability on MFC-7 cells. Taken together, this study deciphered the SARs of chalcones as hCYP1B1 inhibitors and provided several potent hCYP1B1 inhibitors as promising candidates for the development of more efficacious anti-migration agents.


Assuntos
Chalconas , Humanos , Chalconas/farmacologia , Chalconas/química , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
16.
Front Bioeng Biotechnol ; 11: 1170212, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234477

RESUMO

Hepatectomy is an effective surgical method for the treatment of liver diseases, but intraoperative bleeding and postoperative liver function recovery are still key issues. This study aims to develop a composite hydrogel dressing with excellent hemostatic properties, biocompatibility, and ability to promote liver cell regeneration. The modified gelatin matrix (GelMA, 10%) was mixed with equal volumes of sodium alginate-dopamine (Alg-DA) at concentrations of 0.5%, 1%, and 2%. Then a cross-linking agent (0.1%) was added to prepare different composite hydrogels under UV light, named GelMA/Alg-DA-0.5, GelMA/Alg-DA-1 and GelMA/Alg-DA-2, respectively. All the prepared hydrogel has a porous structure with a porosity greater than 65%, and could be stabilized in a gel state after being cross-linked by ultraviolet light. Physicochemical characterization showed that the elastic modulus, water absorption, adhesion, and compressibility of the composite hydrogels were improved with increasing Alg-DA content. Furthermore, the prepared hydrogel exhibits in vitro degradability, excellent biocompatibility, and good hemostatic function. Among all tested groups, the group of GelMA/Alg-DA-1 hydrogel performed the best. To further enhance its application potential in the field of liver regeneration, adipose-derived mesenchymal stem cell exosomes (AD-MSC-Exo) were loaded into GelMA/Alg-DA-1 hydrogel. Under the same conditions, GelMA/Alg-DA-1/Exo promoted cell proliferation and migration more effectively than hydrogels without extracellular vesicles. In conclusion, the prepared GelMA/Alg-DA-1 composite hydrogel loaded with AD-MSC-Exo has great application potential in liver wound hemostasis and liver regeneration.

17.
Front Pharmacol ; 14: 1160665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089921

RESUMO

Introduction: Alisol B 23-acetate (AB23A), a major bioactive constituent in the Chinese herb Zexie (Rhizoma Alismatis), has been found with multiple pharmacological activities. AB23A can be readily hydrolyzed to alisol B in mammals, but the hydrolytic pathways of AB23A in humans and the key enzymes responsible for AB23A hydrolysis are still unrevealed. This study aims to reveal the metabolic organs and the crucial enzymes responsible for AB23A hydrolysis in human biological systems, as well as to decipher the impact of AB23A hydrolysis on its biological effects. Methods: The hydrolytic pathways of AB23A in human plasma and tissue preparations were carefully investigated by using Q-Exactive quadrupole-Orbitrap mass spectrometer and LC-UV, while the key enzymes responsible for AB23A hydrolysis were studied via performing a set of assays including reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses. Finally, the agonist effects of both AB23A and its hydrolytic metabolite(s) on FXR were tested at the cellular level. Results: AB23A could be readily hydrolyzed to form alisol B in human plasma, intestinal and hepatic preparations, while human butyrylcholinesterase (hBchE) and human carboxylesterases played key roles in AB23A hydrolysis in human plasma and tissue preparations, respectively. It was also found that human serum albumin (hSA) could catalyze AB23A hydrolysis, while multiple lysine residues of hSA were covalently modified by AB23A, suggesting that hSA catalyzed AB23A hydrolysis via its pseudo-esterase activity. Biological tests revealed that both AB23A and alisol B exhibited similar FXR agonist effects, indicating AB23A hydrolysis did not affect its FXR agonist effect. Discussion: This study deciphers the hydrolytic pathways of AB23A in human biological systems, which is very helpful for deep understanding of the metabolic rates of AB23A in humans, and useful for developing novel prodrugs of alisol B with desirable pharmacokinetic behaviors.

18.
Analyst ; 148(10): 2225-2236, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37092796

RESUMO

Obesity, now widespread all over the world, is frequently associated with several chronic diseases. Human pancreatic lipase (hPL) is a crucial digestive enzyme responsible for the digestion of dietary lipids in humans, and the inhibition of hPL is effective in reducing triglyceride intake and thus preventing and treating obesity. In this work, a practical sequential screening strategy was developed to construct a highly selective near-infrared fluorogenic substrate 7-STCFC for hPL. Under physiological conditions, 7-STCFC can be rapidly hydrolyzed by hPL to form 7-HTCFC, which triggers 254-fold NIR signal enhancement at 670 nm. 7-STCFC was successfully applied for the sensing and imaging of endogenous PL in living systems (including living cells, tissues and organs) with low cytotoxicity and high imaging resolution. Moreover, a high-throughput screening platform was established using 7-STCFC, and the inhibitory effects of 94 kinds of herbs toward hPL were evaluated. Among them, Pu-erh tea stood out with outstanding hPL inhibitory effects, and the inhibitory ingredients and involved inhibitory mechanism were further revealed, which strongly facilitates the discovery of novel anti-obesity agents targeting hPL. Collectively, these findings suggested that our strategy was practical to develop an isoform-specific fluorogenic substrate for a target enzyme, and 7-STCFC was a powerful tool for monitoring PL activity in complex biological systems with value for exploring physiological functions and rapid screening of inhibitors.


Assuntos
Corantes Fluorescentes , Pâncreas , Humanos , Lipase , Obesidade , Triglicerídeos
19.
Phytomedicine ; 114: 154796, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37037086

RESUMO

BACKGROUND: The 3C-like proteases (3CLpros) are cysteine-rich homodimeric proteins and can be covalently modified by numerous natural and synthetic compounds, which in turn, block the proteolytic activity or the formation of enzymatically active dimeric forms. Although herbal medicines have been widely used to treat COVID-19, identification of the key herbal constituents that can covalently modify the 3CLpros in ß-coronaviruses (CoVs) remains a big challenge. AIMS: To construct a comprehensive approach for efficient discovering the covalent SARS-CoV-2 3CLpro inhibitors from herbal medicines. To decipher the key anti-SARS-CoV-2 3CLpro constituents in Ginkgo biloba extract 50 (GBE50) and to study their anti-SARS-CoV-2 3CLpro mechanisms. METHODS: SARS-CoV-2 3CLpro inhibition assay including time-dependent inhibition assays and inactivation kinetic analyses were conducted using a fluorescence-based biochemical assay. The constituents in GBE50 were analyzed by UHPLC-Q-Exactive Orbitrap HRMS. The peptides modified by herbal constituents were characterized by using nanoLC-MS/MS. RESULTS: Following testing the anti-SARS-CoV-2 3CLpro effects of 104 herbal medicines, it was found that Ginkgo biloba extract 50 (GBE50) potently inhibited SARS-CoV-2 3CLpro in dose- and time-dependent manners. A total of 38 constituents were identified from GBE50 by UHPLC-Q-Exactive Orbitrap HRMS, while 26 peptides modified by 18 constituents were identified by chemoproteomic profiling. The anti-SARS-CoV-2 3CLpro effects of 18 identified covalent inhibitors were then validated by performing time-dependent inhibition assays. The results clearly demonstrated that most tested constituents showed time-dependent inhibition on SARS-CoV-2 3CLpro, while gallocatechin and sciadopitysin displayed the most potent anti-SARS-CoV-2 3CLpro effects. CONCLUSION: Collectively, GBE50 and some constituents in this herbal product could strongly inhibit SARS-CoV-2 3CLpro in dose- and time-dependent manner. Gallocatechin and sciadopitysin were identified as potent SARS-CoV-2 3CLpro inhibitors, which offers promising lead compounds for the development of novel anti-SARS-CoV-2 drugs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Peptídeos , Extratos Vegetais , Espectrometria de Massas em Tandem
20.
Chem Biol Interact ; 378: 110501, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080375

RESUMO

Human carboxylesterase 2A (hCES2A) is a key serine hydrolase responsible for the metabolic clearance of large number of compounds bearing the ester- or amide-bond(s). Inhibition of hCES2A can relieve the chemotherapy-induced toxicity and alter the pharmacokinetic bahaviors of some orally administrate esters-containing agents. However, most of the hCES2A inhibitors show poor cell-membrane permeability and poor specificity. Herein, guided by the structure activity relationships (SAR) of fifteen natural alkaloids against hCES2A, fifteen new seven-membered ring berberine analogues were designed and synthesized, and their anti-hCES2A activities were evaluated. Among all tested compounds, compound 28 showed potent anti-hCES2A effect (IC50 = 1.66 µM) and excellent selectivity over hCES1A (IC50 > 100 µM). The SAR analysis revealed that the seven-membered ring of these berberine analogues was a crucial moiety for hCES2A inhibition, while the secondary amine group of the ring-C is important for improving their specificity over other serine hydrolases. Inhibition kinetic analyses and molecular dynamic simulation demonstrated that 28 strongly inhibited hCES2A in a mixed-inhibition manner, with an estimated Ki value of 1.035 µM. Moreover, 28 could inhibit intracellular hCES2A in living HepG2 cells and exhibited suitable metabolic stability. Collectively, the SAR of seven-membered ring berberine analogues as hCES2A inhibitors were studied, while compound 28 acted as a promising candidate for developing highly selective hCES2A inhibitors.


Assuntos
Berberina , Humanos , Estrutura Molecular , Carboxilesterase/metabolismo , Relação Estrutura-Atividade , Serina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...