Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 130: 155743, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38824822

RESUMO

BACKGROUND: Insulin resistance (IR) is the central pathophysiological feature in the pathogenesis of metabolic syndrome, obesity, type 2 diabetes mellitus (T2DM), hypertension, and dyslipidemia. As the main active ingredient in Lithocarpus litseifolius [Hance] Chun, previous studies have shown that phlorizin (PHZ) can reduce insulin resistance in the liver. However, the effect of phlorizin on attenuating hepatic insulin resistance has not been fully investigated, and whether this effect is related to AMPK remains unclear. PURPOSE: The present study aimed to further investigate the effect of phlorizin on attenuating insulin resistance and the potential action mechanism. METHODS: Free fatty acids (FFA) were used to induce insulin resistance in HepG2 cells. The effects of phlorizin and FFA on cell viability were detected by MTT analysis. Glucose consumption, glycogen synthesis, intracellular malondialdehyde (MDA), superoxide dismutase (SOD), total cholesterol (TC), and triglyceride (TG) contents were quantified after phlorizin treatment. Glucose uptake and reactive oxygen species (ROS) levels in HepG2 cells were assayed by flow cytometry. Potential targets and signaling pathways for attenuating insulin resistance by phlorizin were predicted by network pharmacological analysis. Moreover, the expression levels of proteins related to the AMPK/PI3K/AKT signaling pathway were detected by western blot. RESULTS: Insulin resistance was successfully induced in HepG2 cells by co-treatment of 1 mM sodium oleate (OA) and 0.5 mM sodium palmitate (PA) for 24 h. Treatment with phlorizin promoted glucose consumption, glucose uptake, and glycogen synthesis and inhibited gluconeogenesis in IR-HepG2 cells. In addition, phlorizin inhibited oxidative stress and lipid accumulation in IR-HepG2 cells. Network pharmacological analysis showed that AKT1 was the active target of phlorizin, and the PI3K/AKT signaling pathway may be the potential action mechanism of phlorizin. Furthermore, western blot results showed that phlorizin ameliorated FFA-induced insulin resistance by activating the AMPK/PI3K/AKT signaling pathway. CONCLUSION: Phlorizin inhibited oxidative stress and lipid accumulation in IR-HepG2 cells and ameliorated hepatic insulin resistance by activating the AMPK/PI3K/AKT signaling pathway. Our study proved that phlorizin played a role in alleviating hepatic insulin resistance by activating AMPK, which provided experimental evidence for the use of phlorizin as a potential drug to improve insulin resistance.


Assuntos
Proteínas Quinases Ativadas por AMP , Ácidos Graxos não Esterificados , Resistência à Insulina , Florizina , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Florizina/farmacologia , Células Hep G2 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glucose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos
2.
Cell Rep ; 43(5): 114199, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38728138

RESUMO

Implantable electrode arrays are powerful tools for directly interrogating neural circuitry in the brain, but implementing this technology in the spinal cord in behaving animals has been challenging due to the spinal cord's significant motion with respect to the vertebral column during behavior. Consequently, the individual and ensemble activity of spinal neurons processing motor commands remains poorly understood. Here, we demonstrate that custom ultraflexible 1-µm-thick polyimide nanoelectronic threads can conduct laminar recordings of many neuronal units within the lumbar spinal cord of unrestrained, freely moving mice. The extracellular action potentials have high signal-to-noise ratio, exhibit well-isolated feature clusters, and reveal diverse patterns of activity during locomotion. Furthermore, chronic recordings demonstrate the stable tracking of single units and their functional tuning over multiple days. This technology provides a path for elucidating how spinal circuits compute motor actions.


Assuntos
Eletrodos Implantados , Medula Espinal , Animais , Medula Espinal/fisiologia , Camundongos , Potenciais de Ação/fisiologia , Atividade Motora/fisiologia , Neurônios/fisiologia , Locomoção/fisiologia , Camundongos Endogâmicos C57BL , Masculino
3.
Artigo em Inglês | MEDLINE | ID: mdl-38801437

RESUMO

OBJECTIVE: To develop and validate a radiomics-clinical combined model combining preoperative CT and clinical data from patients with papillary thyroid carcinoma (PTC) to predict the efficacy of initial postoperative 131I treatment. METHODS: A total of 181 patients with PTC who received total thyroidectomy and initial 131I treatment were divided into training and testing sets (7:3 ratio). Univariate analysis and multivariate logistic regression were used to screen clinical factors affecting the therapeutic response to 131I treatment and construct a clinical model. Radiomics features extracted from preoperative CT images of PTCs were dimensionally reduced through recursive feature elimination and least absolute shrinkage and selection operator. Logistic regression was used to establish a radiomics model, and a radiomics-clinical combined model was developed by integrating the clinical model. The area under the curve (AUC), sensitivity, and specificity were used to evaluate the prediction performance of each model. RESULTS: Multivariate analysis revealed that pre-131I treatment sTg was an independent clinical risk factor affecting the efficacy of initial 131I treatment (P = 0.002), and the AUC, sensitivity, and specificity for predicting the efficacy of initial 131I treatment were 0.895, 0.899, and 0.816, respectively. After dimensionality reduction, 14 key CT radiomics features of PTCs were included. The established radiomics model predicted the efficacy of 131I treatment in the training and testing sets with AUCs of 0.825 and 0.809, sensitivities of 0.828 and 0.636, and specificities of 0.745 and 0.944, respectively. The combined model improved the AUC, sensitivity, and specificity in both sets. CONCLUSION: The preoperative CT-based radiomics model can effectively predict the efficacy of initial postoperative 131I treatment in patients with intermediate- or high-risk PTC, and the radiomics-clinical combined model exhibits better predictive performance.

4.
Anal Bioanal Chem ; 415(26): 6471-6480, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37656211

RESUMO

Cooking oil is a critical component of human food and its main component, lipid, is influential to health, but assessing its authenticity and quality can be challenging due to its complex chemical composition. In this study, we introduce a novel application of time-resolved coherent anti-Stokes Raman scattering (T-CARS) spectroscopy for detecting adulteration and understanding the mechanisms of lipid oxidation in various cooking oils. Our research surpasses the limitations of conventional spontaneous Raman spectroscopy, demonstrating that intra-molecular interactions from unsaturated bonds in triglycerides significantly influence vibrational dephasing time. We observed that these dephasing times, although diverse initially, converge to a similar value after heating cycles. Notably, a longer vibrational dephasing of the CH2 symmetric stretching mode was found to correlate with a higher lipid oxidation rate. These findings underscore the potential of T-CARS in identifying and characterizing subtle molecular interactions, offering a transformative approach to understanding molecular dynamics. This research paves the way for broader applications of T-CARS across fields such as chemistry, biomedicine, and material science, marking a significant advancement in the development of innovative analytical techniques.

5.
Phytomedicine ; 119: 154960, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37531905

RESUMO

BACKGROUND: Rosa roxburghii Tratt (RRT) is a famous healthy and medicinal edible fruit in southwest China and has been shown to have some hepatoprotective properties. However, whether the active components, such as the triterpene acids from Rosa roxburghii Tratt fruits (TAR), have anti-hepatocellular carcinoma (HCC) effects and the potential molecular mechanisms are still unclear. PURPOSE: This study aimed to investigate the anti-HCC effects and potential action mechanisms of triterpene components in RRT fruits. METHODS: The triterpene acids in TAR were analyzed by using UPLC-Q-Exactive Orbitrap/MS, and the main components were virtual screening for targets based on pharmacophore and then performed enrichment analysis. HepG2 cells were used for in vitro experiments, including MTT assay, wound healing assay, and flow cytometry to detect cell cycle, reactive oxygen species (ROS) level, caspase-3 activity, and mitochondrial membrane potential (MMP) changes. Moreover, the western blot was used to detect mitochondrial apoptosis and ROS/ c-Jun N-terminal kinase (JNK) signaling pathway-related proteins. RESULTS: The main components in TAR are pentacyclic triterpene acids (mainly euscaphic acid and roxburic acid). TAR could inhibit cell viability, cell migration ability and suppress the proliferation of HepG2 cells through G2/M cell cycle arrest. On the other hand, TAR could induce HepG2 cells apoptosis, which was achieved by causing the accumulation of ROS and activation of the JNK signaling pathway, and our research showed that this apoptosis was mediated through the mitochondrial pathway. In addition, the free radical scavenger N-acetyl cysteine (NAC) could attenuate TAR-induced ROS accumulation and JNK signaling pathway activation, which ultimately reversed mitochondrial apoptosis. CONCLUSION: TAR could activate the ROS/JNK signaling pathway, which could inhibit the proliferation through G2/M cell cycle arrest and promote apoptosis through the mitochondrial pathway in HCC cells. This supports the anti-tumor potential in RRT fruits.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Rosa , Triterpenos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Sistema de Sinalização das MAP Quinases , Frutas , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular , Apoptose , Células Hep G2 , Triterpenos/farmacologia , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral
6.
Food Sci Nutr ; 11(6): 2733-2750, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37324930

RESUMO

"Dao Ban Xiang" is a famous traditional Chinese dry-cured meat product. This study aimed to comparatively analyze the difference in the volatile flavor information of "Dao Ban Xiang" produced in winter and summer. In this study, we determine the physical and chemical properties, free amino acids (FAAs), free fatty acids (FFAs), and volatile compounds in the four processing stages of samples in winter and summer. The content of FAAs decreased significantly during the curing period in winter while increasing steadily in summer. The content of total FFAs increased in both winter and summer, and polyunsaturated fatty acids (PUFAs) decreased significantly in summer. The characteristic compound in winter samples is hexanal, nonanal, and (E)-2-octenal, which may mainly come from the degradation of FAAs, while the characteristic compound in winter samples is hexanal, nonanal, and (E)-2-nonenal, which may mainly be derived from the oxidation of FFAs. This study extends our knowledge on flavor from traditional cured meat products at different processing stages in different seasons and could be useful for the standardization of the traditional and regional meat products.

7.
Annu Rev Biomed Eng ; 25: 185-205, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37289556

RESUMO

Penetrating neural electrodes provide a powerful approach to decipher brain circuitry by allowing for time-resolved electrical detections of individual action potentials. This unique capability has contributed tremendously to basic and translational neuroscience, enabling both fundamental understandings of brain functions and applications of human prosthetic devices that restore crucial sensations and movements. However, conventional approaches are limited by the scarce number of available sensing channels and compromised efficacy over long-term implantations. Recording longevity and scalability have become the most sought-after improvements in emerging technologies. In this review, we discuss the technological advances in the past 5-10 years that have enabled larger-scale, more detailed, and longer-lasting recordings of neural circuits at work than ever before. We present snapshots of the latest advances in penetration electrode technology, showcase their applications in animal models and humans, and outline the underlying design principles and considerations to fuel future technological development.


Assuntos
Longevidade , Neurociências , Animais , Humanos , Eletrodos , Encéfalo/fisiologia , Potenciais de Ação/fisiologia , Eletrodos Implantados
8.
Front Oncol ; 13: 1086039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152026

RESUMO

Objective: This study aimed to investigate the application of modified region-of-interest (ROI) segmentation method in unenhanced computed tomography in the radiomics model of adrenal lipid-poor adenoma, and to evaluate the diagnostic performance using an external medical institution data set and select the best ROI segmentation method. Methods: The imaging data of 135 lipid-poor adenomas and 102 non-adenomas in medical institution A and 30 lipid-poor adenomas and 43 non-adenomas in medical institution B were retrospectively analyzed, and all cases were pathologically or clinically confirmed. The data of Institution A builds the model, and the data of Institution B verifies the diagnostic performance of the model. Semi-automated ROI segmentation of tumors was performed using uAI software, using maximum area single-slice method (MAX) and full-volume method (ALL), as well as modified single-slice method (MAX_E) and full-volume method (ALL_E) to segment tumors, respectively. The inter-rater correlation coefficients (ICC) was performed to assess the stability of the radiomics features of the four ROI segmentation methods. The area under the curve (AUC) and at least 95% specificity pAUC (Partial AUC) were used as measures of the diagnostic performance of the model. Results: A total of 104 unfiltered radiomics features were extracted using each of the four segmentation methods. In the ROC analysis of the radiomics model, the AUC value of the model constructed by MAX was 0.925, 0.919, and 0.898 on the training set, the internal validation set, and the external validation set, respectively, and the AUC value of MAX_E was 0.937, 0.931, and 0.906, respectively. The AUC value of ALL was 0.929, 0.929, and 0.918, and the AUC value of ALL_E was 0.942, 0.926, and 0.927, respectively. In all samples, the pAUCs of MAX, MAX_E, ALL, and ALL_E were 0.021, 0.025, 0.018, and 0.028, respectively. Conclusion: The diagnostic performance of the radiomics model constructed based on the full-volume method was better than that of the model based on the single-slice method. The model constructed using the ALL_E method had a stronger generalization ability and the highest AUC and pAUC value.

9.
Front Chem ; 11: 1166313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065823

RESUMO

Spatiotemporal dynamics of small-molecule metabolites have gained increasing attention for their essential roles in deciphering the fundamental machinery of life. However, subcellular-level regulatory mechanisms remain less studied, particularly due to a lack of tools to track small-molecule metabolites. To address this challenge, we developed high-resolution stimulated Raman scattering (SRS) imaging of a genetically engineered model (GEM) to map metabolites in subcellular resolution. As a result, an unexpected regulatory mechanism of a critical metabolite, sterol, was discovered in yeast by amplifying the strength of vibrational imaging by genetic modulation. Specifically, isozymes of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) were evident to promote ergosterol distribution to distinct subcellular locations, where ergosterol was enriched by a local HMGR-directed synthesis. The heterogeneity of this expression pattern thus provides new insights into sterol metabolism and related disease treatment strategies. These findings demonstrate SRS-GEM as a promising platform for new possibilities in investigating metabolic regulation, disease mechanisms, and biopharmaceutical research.

10.
Front Endocrinol (Lausanne) ; 14: 1103434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033256

RESUMO

Objectives: To evaluate the value of computed tomography (CT) enhancement degree in diagnosing lymph node (LN) metastasis in papillary thyroid carcinoma (PTC) by determining the ratio and difference between the Hounsfield units (HU) of CT enhancement and plain scan of the LNs, as well as between the HU of CT-enhanced LNs and the sternocleidomastoid muscle. Methods: The plain and enhanced CT findings of 114 metastasis-positive LNs in 89 cases and 143 metastasis-negative LNs in 114 cases of PTC were analyzed retrospectively. Plain HU of LNs (PNHU), enhanced HU of LNs (ENHU), and enhanced HU of the sternocleidomastoid muscle (EMHU) were measured. The ENHU, difference between ENHU and PNHU (EN-PNHU), ratio of ENHU to PNHU (EN/PNHU), difference between ENHU and EMHU (EN-EMHU), and ratio of ENHU to EMHU (EN/EMHU) in metastasis-positive and metastasis-negative LN groups were calculated, the corresponding diagnostic efficacy for differentiating metastasis-positive from metastasis-negative LNs in PTC were sought using the receiver-operating curve. The interobserver agreement between readers was assessed using the interobserver correlation coefficient (ICC). Results: The ENHU of 114 metastasis-positive LNs and 143 metastasis-negative LNs was 113.39 ± 24.13 and 77.65 ± 15.93, EN-PNHU was 65.84 ± 21.72 HU and 34.07 ± 13.63 HU, EN/PNHU was 2.36 (1.98, 2.75) and 1.76 (1.54, 2.02), EN-EMHU was 49.42 ± 24.59 HU and 13.27 ± 15.41 HU, and EN/EMHU was 1.79 ± 0.40 and 1.21 ± 0.24, respectively (all P < 0.001). The area under the curve, cutoff value, sensitivity, specificity, and accuracy of ENHU for identifying metastasis-positive and metastasis-negative LNs were 0.895, 97.3 HU, 0.746, 0.895, and 0.829, EN-PNHU was 0.894, 47.8 HU, 0.807, 0.874, and 0.844, EN/PNHU was 0.831, 1.9, 0.877, 0.650, and 0.751, EN-EMHU was 0.890, 26.4 HU, 0.807, 0.839, and 0.825, and EN/EMHU was 0.888, 1.5, 0.728, 0.902, and 0.825, respectively. The readers had an excellent interobserver agreement on these five parameters (ICC = 0.874-0.994). Conclusion: In the preoperative evaluation of LN metastasis in PTC, ENHU, EN-PNHU, EN-EMHU, and EN/EMHU had similarly high diagnostic efficacy, with ENHU, EN-PNHU, and EN/EMHU having higher specificity and EN-PNHU and EN-EMHU having higher sensitivity.


Assuntos
Carcinoma Papilar , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/patologia , Metástase Linfática/diagnóstico por imagem , Estudos Retrospectivos , Carcinoma Papilar/patologia , Tomografia Computadorizada por Raios X
11.
Nat Biomed Eng ; 7(4): 520-532, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36192597

RESUMO

Penetrating flexible electrode arrays can simultaneously record thousands of individual neurons in the brains of live animals. However, it has been challenging to spatially map and longitudinally monitor the dynamics of large three-dimensional neural networks. Here we show that optimized ultraflexible electrode arrays distributed across multiple cortical regions in head-fixed mice and in freely moving rats allow for months-long stable electrophysiological recording of several thousand neurons at densities of about 1,000 neural units per cubic millimetre. The chronic recordings enhanced decoding accuracy during optogenetic stimulation and enabled the detection of strongly coupled neuron pairs at the million-pair and millisecond scales, and thus the inference of patterns of directional information flow. Longitudinal and volumetric measurements of neural couplings may facilitate the study of large-scale neural circuits.


Assuntos
Fenômenos Eletrofisiológicos , Roedores , Ratos , Camundongos , Animais , Eletrodos Implantados , Fenômenos Eletrofisiológicos/fisiologia , Encéfalo/fisiologia , Neurônios/fisiologia
12.
Biomaterials ; 291: 121905, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36403326

RESUMO

Flexible neural electrodes improve the recording longevity and quality of individual neurons by promoting tissue-electrode integration. However, the intracortical implantation of flexible electrodes inevitably induces tissue damage. Understanding the longitudinal neural and vascular recovery following the intracortical implantation is critical for the ever-growing applications of flexible electrodes in both healthy and disordered brains. Aged animals are of particular interest because they play a key role in modeling neurological disorders, but their tissue-electrode interface remains mostly unstudied. Here we integrate in-vivo two-photon imaging and electrophysiological recording to determine the time-dependent neural and vascular dynamics after the implantation of ultraflexible neural electrodes in aged mice. We find heightened angiogenesis and vascular remodeling in the first two weeks after implantation, which coincides with the rapid increase in local field potentials and unit activities detected by electrophysiological recordings. Vascular remodeling in shallow cortical layers preceded that in deeper layers, which often lasted longer than the recovery of neural signals. By six weeks post-implantation vascular abnormalities had subsided, resulting in normal vasculature and microcirculation. Putative cell classification based on firing pattern and waveform shows similar recovery time courses in fast-spiking interneurons and pyramidal neurons. These results elucidate how structural damages and remodeling near implants affecting recording efficacy, and support the application of ultraflexible electrodes in aged animals at minimal perturbations to endogenous neurophysiology.


Assuntos
Neurônios , Remodelação Vascular , Animais , Camundongos , Eletrodos , Encéfalo , Interneurônios
13.
Front Endocrinol (Lausanne) ; 13: 1007870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440234

RESUMO

Objectives: To investigate the value of mean attenuation value (AVmean), minimum attenuation value (AVmin), and CT histogram (CTH) for the differential diagnosis of adrenal adenoma and non-adenoma in two medical centers. Methods: The plain CT data of 403 cases of adrenal adenoma and 141 cases of non-adenoma in center A were retrospectively analyzed, and compared with data of 86 cases of adenoma and 71 cases of non-adenoma in center B. All cases were confirmed by pathology or clinical follow-up. The diagnostic efficacy of AVmean ≤ 10 Hounsfield units (HU), AVmin ≤ 0 HU, and CTH negative pixels ≥ 10% for adrenal adenoma, and AVmin and CTH for adenoma with AVmean > 10Hu were compared between the two medical centers. Results: In medical centers A and B, the AUC of AVmean for the differential diagnosis of adenoma and non-adenoma was 0.956 and 0.956, respectively, and the corresponding sensitivity, specificity, and accuracy were, 0.591 and 0.663, 1.000 and 1.000, 0.697, and 0.815, respectively, when the threshold was ≤ 10 HU. The AUC of AVmin was 0.941 and 0.958, respectively, and the corresponding sensitivity, specificity, and accuracy were 0.869 and 0.826, 0.986, and 0.972, 0.899, and 0.892, respectively, when the threshold was ≤ 0 HU. The AUC of CTH negative pixels was 0.948 and 0.952, respectively, and the corresponding sensitivity, specificity, and accuracy were 0.759 and 0.674, 1.000 and 1.000, 0.822, and 0.822, respectively, when the threshold was ≥ 10%. Among adenoma with AVmean >10 HU, the best threshold of AVmin in center A and center B were -0.250HU and 2.375HU, and the corresponding AUC, sensitivity and specificity were 0.858 and 0.846, 0.691 and 0.586, 0.986 and 0.958; the best threshold of CTH in center A and center B were 0.895% and 0.775%, and the corresponding AUC, sensitivity and specificity were 0.873 and 0.822, 0.818 and 0.724, 0.837 and 0.915. Conclusion: AVmean, AVmin, and CTH are all important parameters for differentiating adrenal adenoma from non-adenoma. Even for adenomas with AVmean > 10 HU, AVmin and CTH still had high diagnostic efficiency. The three parameters are complementary, assisting clinicians to develop personalized treatments.


Assuntos
Adenoma , Neoplasias das Glândulas Suprarrenais , Adenoma Adrenocortical , Humanos , Neoplasias das Glândulas Suprarrenais/diagnóstico por imagem , Neoplasias das Glândulas Suprarrenais/patologia , Estudos Retrospectivos , Adenoma Adrenocortical/diagnóstico por imagem , Adenoma/diagnóstico por imagem , Adenoma/patologia , Tomografia Computadorizada por Raios X
14.
Adv Sci (Weinh) ; 9(32): e2203711, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36180420

RESUMO

Untethered soft magnetoresponsive actuators (SMRAs), which can realize rapid shape transformation, have attracted widespread attention for their strategic applications in exploration, transportation, and minimally invasive medicine. It remains a challenge to fabricate SMRAs with complicated morphing modes (more than bending and folding), limiting their applications to simple shape-morphing and locomotion. Herein, a method integrating the ancient kirigami art and an advanced mechanical assembly method is proposed, which realizes 2D-to-3D and 3D-to-3D complicated shape-morphing and precise magnetization programming through cut-guided deformation. The kirigami-inspired SMRAs exhibit good robustness after actuating more than 10000 times. An integrated finite element analysis method is developed to quantitatively predict the shape transformation of SMRAs under magnetic actuation. By leveraging this method, a set of 3D curved responsive morphologies with programmed Gaussian curvature are fabricated (e.g., ellipsoid and saddle structures), specifically 3D multilayer structures and face-like shapes with different expressions, which are difficult to realize using previous approaches. Furthermore, a bionic-scaled soft crawling robot with significant obstacle surmounting ability is fabricated using the kirigami-inspired method. The ability of the method to achieve programmable SMRAs with versatile morphing modes may broaden its applications in soft robotics, color-switchable devices, and clinical treatments.


Assuntos
Robótica , Robótica/métodos , Análise de Elementos Finitos , Distribuição Normal
15.
Anal Chem ; 94(23): 8409-8415, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35623094

RESUMO

Molecular vibrational spectroscopy is widely used in various sensing and imaging applications, providing intrinsic information at the molecular level. Nonlinear optical interactions using ultrashort laser pulses facilitate the selective coherent excitation of molecular vibrational modes by focusing energy into specific molecular bonds, boosting the signal level for multiple orders of magnitude. The dephasing of such coherence, which is susceptible to the local molecular environment, however, is often neglected. The unique capability of vibrational dephasing dynamics to serve as a unique probe for complex molecular interactions and the effect of local nano- and microenvironments are beyond the reach of conventional, intensity-based spectroscopy. Here, we developed a novel multiorder coherent Raman spectroscopy platform with a special focus on the temporal evolution of molecular vibrational dephasing, termed as time-resolved coherent Raman scattering (T-CRS) spectroscopy. By utilizing a high dynamic range detection, molecular vibrational dynamics and the environmental effects are demonstrated with multidimensional spectroscopic sensing, which promises a new range of applications in biology, materials, and chemical sciences.


Assuntos
Análise Espectral Raman , Vibração , Diagnóstico por Imagem , Lasers , Análise Espectral Raman/métodos
16.
Phytomedicine ; 98: 153919, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35104757

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis and hepatocyte injury, is an obesity-induced metabolic dysregulation with few available therapeutic options. Enhancement of the mitochondrial function was considered as an effective treatment for NALFD. Unsaturated fatty acids (UFAs) have been shown to have beneficial effects on metabolic syndrome disease such as hyperlipidemia, coronary artery disease and cardiovascular diseases. The seed oil of Rosa roxburghii Tratt (ORRT) was of high quality in terms of its high amount of unsaturated fatty acids. However, the effects of ORRT on NALFD have not been reported so far. PURPOSE: The study aimed to evaluate the protective effects and molecular mechanism of ORRT for the treatment of NAFLD in vivo and in vitro. METHODS: The beneficial effects, especially improving the mitochondrial function, and the potential mechanism of ORRT on NAFLD were studied both in vivo and in vitro. Lipid levels were determined by triglyceride (TG), total cholesterol (TC), and Oil Red O staining. Oxidative stress and inflammation were assessed by detecting antioxidant enzyme activity, MDA content, and ELISA assay. Blood TG, TC, HDL-c and LDL-c levels were measured in HFD mice. Western blot analyses were used to determine the levels of the protein involved in fatty acid oxidation, oxidative metabolism, and mitochondria biogenesis and function. The mitochondrial membrane potential level was measured by JC-1 staining to teste the effect of ORRT on mitochondrial function in vitro. GW6471 (inhibitor of PPARα) was used to confirm the relationship between PPARα and PGC-1α. RESULTS: ORRT significantly restrained NAFLD progression by attenuating lipid accumulation, oxidative stress and inflammatory response. Furthermore, ORRT upregulated thermogenesis-related gene expressions, such as uncoupling protein 1 (UCP1) and p38 mitogen-activated protein kinase (p38 MAPK). The results showed that the expression of key genes involved in fatty acid oxidation (e.g., CPT-1α, ACADL, PPARα) and in mitochondrial biogenesis and function (e.g., TFAM, NRF1, PGC-1α, and COX IV) was significantly increased. Together with the observed MMP improvement, these findings suggested that ORRT activated the mitochondrial oxidative pathway. Additionally, GW6471 inhibited the ORRT on promoting the expression of PGC-1α, CPT-1α, and ACADL. In conclusion, ORRT possessed the potential to prevent lipid accumulation via the PPARα/PGC-1α signaling pathway, which could be developed as a natural health-promoting oil against NAFLD.

17.
Contrast Media Mol Imaging ; 2021: 9668836, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377105

RESUMO

This study focused on the application value of MRI images processed by a Support Vector Machine (SVM) algorithm-based model in diagnosis of benign and malignant solitary pulmonary nodule (SPN). The SVM algorithm was constrained by a self-paced regularization item and gradient value to establish the MRI image segmentation model (SVM-L) for lung. Its performance was compared factoring into the Dice index (DI), sensitivity (SE), specificity (SP), and Mean Square Error (MSE). 28 SPN patients who underwent the parallel MRI examination were selected as research subjects and were divided into the benign group (11 patients) and malignant group (17 patients) according to different plans for diagnosis and treatment. The apparent diffusion coefficient (ADC) at different b values was analyzed, and the steepest slope (SS) and washout ratio (WR) values in the two groups were calculated. The result showed that the MSE, DI, SE, SP values, and operation time of the SVM-L model were (0.41 ± 0.02), (0.84 ± 0.13), (0.89 ± 0.04), (0.993 ± 0.004), and (30.69 ± 2.60)s, respectively, apparently superior to those of the other algorithms, but there were no statistic differences (P > 0.05) in the WR value between the two groups of patients. The SS values of the time-signal curve in the benign and malignant groups were (2.52 ± 0.69) %/s and (3.34 ± 00.41) %/s, respectively. Obviously, the SS value of the benign group was significantly lower than that of the malignant group (P < 0.01). The ADC value with different b values in the benign group was significantly lower than that of the malignant group (P < 0.01). It suggested that the SVM-L model significantly improved the quality of lung MRI images and increased the accuracy to differentiate benign and malignant SPN, providing reference for the diagnosis and treatment of SPN patients.


Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/cirurgia , Nódulo Pulmonar Solitário/diagnóstico , Máquina de Vetores de Suporte , Adulto , Idoso , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem
18.
J Neural Eng ; 18(5)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34428752

RESUMO

Objective.Proximal-to-distal compensation is commonly observed in the upper extremity (UE) after a stroke, mainly due to the impaired fine motor control in hand joints. However, little is known about its related neural reorganization. This study investigated the pathway-specific corticomuscular interaction in proximal-to-distal UE compensation during fine motor control of finger extension post-stroke by directed corticomuscular coherence (dCMC).Approach.We recruited 14 chronic stroke participants and 11 unimpaired controls. Electroencephalogram (EEG) from the sensorimotor area was concurrently recorded with electromyography (EMG) from extensor digitorum (ED), flexor digitorum (FD), triceps brachii (TRI) and biceps brachii (BIC) muscles in both sides of the stroke participants and in the dominant (right) side of the controls during the unilateral isometric finger extension at 20% maximal voluntary contractions. The dCMC was analyzed in descending (EEG → EMG) and ascending pathways (EMG → EEG) via the directed coherence. It was also analyzed in stable (segments with higher EMG stability) and less-stable periods (segments with lower EMG stability) subdivided from the whole movement period to investigate the fine motor control. Finally, the corticomuscular conduction time was estimated by dCMC phase delay.Main results.The affected limb had significantly lower descending dCMC in distal UE (ED and FD) than BIC (P< 0.05). It showed the descending dominance (significantly higher descending dCMC than the ascending,P< 0.05) in proximal UE (BIC and TRI) rather than the distal UE as in the controls. In the less-stable period, the affected limb had significantly lower EMG stability but higher ascending dCMC (P< 0.05) in distal UE than the controls. Furthermore, significantly prolonged descending conduction time (∼38.8 ms) was found in ED in the affected limb than the unaffected (∼26.94 ms) and control limbs (∼25.74 ms) (P< 0.05).Significance.The proximal-to-distal UE compensation in fine motor control post-stroke exhibited altered descending dominance from the distal to proximal UE, increased ascending feedbacks from the distal UE for fine motor control, and prolonged descending conduction time in the agonist muscle.


Assuntos
Dedos , Acidente Vascular Cerebral , Braço , Eletromiografia , Humanos , Músculo Esquelético
19.
J Neural Eng ; 18(4)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34284369

RESUMO

Objective. Complex spatiotemporal neural activity encodes rich information related to behavior and cognition. Conventional research has focused on neural activity acquired using one of many different measurement modalities, each of which provides useful but incomplete assessment of the neural code. Multi-modal techniques can overcome tradeoffs in the spatial and temporal resolution of a single modality to reveal deeper and more comprehensive understanding of system-level neural mechanisms. Uncovering multi-scale dynamics is essential for a mechanistic understanding of brain function and for harnessing neuroscientific insights to develop more effective clinical treatment.Approach. We discuss conventional methodologies used for characterizing neural activity at different scales and review contemporary examples of how these approaches have been combined. Then we present our case for integrating activity across multiple scales to benefit from the combined strengths of each approach and elucidate a more holistic understanding of neural processes.Main results. We examine various combinations of neural activity at different scales and analytical techniques that can be used to integrate or illuminate information across scales, as well the technologies that enable such exciting studies. We conclude with challenges facing future multi-scale studies, and a discussion of the power and potential of these approaches.Significance. This roadmap will lead the readers toward a broad range of multi-scale neural decoding techniques and their benefits over single-modality analyses. This Review article highlights the importance of multi-scale analyses for systematically interrogating complex spatiotemporal mechanisms underlying cognition and behavior.


Assuntos
Cognição
20.
World J Clin Cases ; 9(16): 4046-4051, 2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34141765

RESUMO

BACKGROUND: Previous studies reported that most of the intracranial dermoid cyst ruptures were spontaneous, and only a few were traumatic, with asymptomatic much rarer than the symptomatic ruptures. Hence, how to deal with the asymptomatic traumatic rupture of intracranial dermoid cyst remains a challenge in the clinic. CASE SUMMARY: A 59-year-old man was accidentally diagnosed with intracranial dermoid cyst through a cranial computed tomography (CT) scan due to a car accident. A mixed-density lesion with fat and a calcified margin was observed in the midline of the posterior fossa, accompanied with lipid droplet drifts in brain sulci, fissures, cisterns, and ventricles. After 1 wk of conservative observation, no change was observed on the updated cranial CT scan. After 2 wk of conservative observation, magnetic resonance imaging examination confirmed that the lesion was a traumatic rupture of a posterior fossa dermoid cyst with lipid droplet drifts. As the patient exhibited no adverse symptoms throughout the 2 wk, a 6-mo follow-up visit was arranged for him instead of aggressive treatment. Nonetheless, the patient did not show any abnormal neurological symptoms in the 6 mo of follow-up visits. CONCLUSION: Asymptomatic traumatic rupture of intracranial dermoid cyst could be just followed or treated conservatively rather than treated aggressively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...