Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2406872, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865488

RESUMO

Self-assembled monolayers (SAMs) as the hole-selective contact have achieved remarkable success in iodine-based perovskite solar cells (PSCs), while their impact on bromine-based PSCs is limited due to the poor perovskite crystallization behavior and mismatched energy level alignment. Here, a highly efficient SAM of (2-(3,6-diiodo-9H-carbazol-9-yl)ethyl)phosphonic acid (I-2PACz) is employed to address these challenges in FAPbBr3-based PSCs. The incorporation of I atoms into I-2PACz not only releases tensile stress within FAPbBr3 perovskite, promoting oriented crystallization and minimizing defects through halogen-halogen bond, but also optimizes the energy levels alignment at hole-selective interface for enhanced hole extraction. Ultimately, a power conversion efficiency (PCE) of 11.14% is achieved, which stands among the highest reported value for FAPbBr3 PSCs. Furthermore, the semitransparent devices/modules exhibit impressive PCEs of 8.19% and 6.23% with average visible transmittance of 41.98% and 38.99%. Remarkably, after operating at maximum power point for 1000 h, the encapsulated device maintains 93% of its initial PCE. These results demonstrate an effective strategy for achieving high-performance bromine-based PSCs toward further applications.

2.
Small ; 19(11): e2206927, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36541740

RESUMO

Quasi-2D perovskites have demonstrated great application potential in light-emitting diodes (LEDs). Defect passivation with chemicals plays a critical role to achieve high efficiency. However, there are still challenges in comprehensively passivating the defects distributed at surface, bulk, and buried interface of quasi-2D perovskite emitting films, hindering the further improvement of device performance. Herein, 9,9-substituted fluorene derivatives with different terminal functional groups are developed tactfully to realize comprehensive passivation, which greatly contributes to reducing nonradiative recombination at surface, suppressing ion migration in bulk, and filling interfacial charge traps at buried interface, respectively. Eventually, quasi-2D perovskite LEDs have an increased external quantum efficiency from 18.2% to 23.2%, improved operation lifetime by more than six times and lower turn-on voltage simultaneously. Here the importance of comprehensive passivation is highlighted and guidelines for the design and application of passivators for perovskite optoelectronics are provided.

3.
Org Lett ; 16(7): 1836-9, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24655126

RESUMO

A novel protocol to synthesize tert-butyl esters from boronic acids or boronic acid pinacol esters and di-t-butyl dicarbonate has been successfully achieved. The cross-coupling reactions can produce up to 94% yields by using palladium acetate and triphenylphosphine as catalyst system, dioxane as a solvent. Moreover, a wide range of substrates including benzenes, pyridines, and quinolines boronic acids or boronic acid pinacol esters can fit with this system as well.


Assuntos
Ácidos Borônicos/química , Butanos/síntese química , Paládio/química , Butanos/química , Catálise , Ésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...