Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 193, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992659

RESUMO

BACKGROUND: Macrophages play important roles in phagocytosing tumor cells. However, tumors escape macrophage phagocytosis in part through the expression of anti-phagocytic signals, most commonly CD47. In Ewing sarcoma (ES), we found that tumor cells utilize dual mechanisms to evade macrophage clearance by simultaneously over-expressing CD47 and down-regulating cell surface calreticulin (csCRT), the pro-phagocytic signal. Here, we investigate the combination of a CD47 blockade (magrolimab, MAG) to inhibit the anti-phagocytic signal and a chemotherapy regimen (doxorubicin, DOX) to enhance the pro-phagocytic signal to induce macrophage phagocytosis of ES cells in vitro and inhibit tumor growth and metastasis in vivo. METHODS: Macrophages were derived from human peripheral blood monocytes by granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF). Flow cytometry- and microscopy-based in-vitro phagocytosis assays were performed to evaluate macrophage phagocytosis of ES cells. Annexin-V assay was performed to evaluate apoptosis. CD47 was knocked out by CRISPR/Cas9 approach. ES cell-based and patient-derived-xenograft (PDX)-based mouse models were utilized to assess the effects of MAG and/or DOX on ES tumor development and animal survival. RNA-Seq combined with CIBERSORTx analysis was utilized to identify changes in tumor cell transcriptome and tumor infiltrating immune cell profiling in MAG and/or DOX treated xenograft tumors. RESULTS: We found that MAG significantly increased macrophage phagocytosis of ES cells in vitro (p < 0.01) and had significant effect on reducing tumor burden (p < 0.01) and increasing survival in NSG mouse model (p < 0.001). The csCRT level on ES cells was significantly enhanced by DOX in a dose- and time-dependent manner (p < 0.01). Importantly, DOX combined with MAG significantly enhanced macrophage phagocytosis of ES cells in vitro (p < 0.01) and significantly decreased tumor burden (p < 0.01) and lung metastasis (p < 0.0001) and extended animal survival in vivo in two different mouse models of ES (p < 0.0001). Furthermore, we identified CD38, CD209, CD163 and CD206 as potential markers for ES-phagocytic macrophages. Moreover, we found increased M2 macrophage infiltration and decreased expression of Cd209 in the tumor microenvironment of MAG and DOX combinatorial therapy treated tumors. CONCLUSIONS: By turning "two keys" simultaneously to reactivate macrophage phagocytic activity, our data demonstrated an effective and highly translatable alternative therapeutic approach utilizing innate (tumor associated macrophages) immunotherapy against high-risk metastatic ES.


Assuntos
Imunoterapia , Macrófagos , Sarcoma de Ewing , Sarcoma de Ewing/imunologia , Sarcoma de Ewing/patologia , Sarcoma de Ewing/terapia , Sarcoma de Ewing/tratamento farmacológico , Animais , Camundongos , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Imunoterapia/métodos , Antígeno CD47/metabolismo , Linhagem Celular Tumoral , Fagocitose , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Imunidade Inata , Modelos Animais de Doenças
2.
Front Pharmacol ; 15: 1341020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469403

RESUMO

Introduction: Yinchenzhufu decoction (YCZFD) is a traditional Chinese medicine formula with hepatoprotective effects. In this study, the protective effects of YCZFD against cholestatic liver fibrosis (CLF) and its underlying mechanisms were evaluated. Methods: A 3, 5-diethoxycarbonyl-1, 4-dihydro-collidine (DDC)-induced cholestatic mouse model was used to investigate the amelioration of YCZFD on CLF. Data-independent acquisition-based mass spectrometry was performed to investigate proteomic changes in the livers of mice in three groups: control, model, and model treated with high-dose YCZFD. The effects of YCZFD on the expression of key proteins were confirmed in mice and cell models. Results: YCZFD significantly decreased the levels of serum biochemical, liver injury, and fibrosis indicators of cholestatic mice. The proteomics indicated that 460 differentially expressed proteins (DEPs) were identified among control, model, and model treated with high-dose YCZFD groups. Enrichment analyses of these DEPs revealed that YCZFD influenced multiple pathways, including PI3K-Akt, focal adhesion, ECM-receptor interaction, glutathione metabolism, and steroid biosynthesis pathways. The expression of platelet derived growth factor receptor beta (PDGFRß), a receptor associated with the PI3K/AKT and focal adhesion pathways, was upregulated in the livers of cholestatic mice but downregulated by YCZFD. The effects of YCZFD on the expression of key proteins in the PDGFRß/PI3K/AKT pathway were further confirmed in mice and transforming growth factor-ß-induced hepatic stellate cells. We uncovered seven plant metabolites (chlorogenic acid, scoparone, isoliquiritigenin, glycyrrhetinic acid, formononetin, atractylenolide I, and benzoylaconitine) of YCZFD that may regulate PDGFRß expression. Conclusion: YCZFD substantially protects against DDC-induced CLF mainly through regulating the PDGFRß/PI3K/AKT signaling pathway.

3.
J Med Chem ; 67(6): 4804-4818, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38466231

RESUMO

Proteolysis-targeting chimera (PROTAC) is a powerful technology that can effectively trigger the degradation of target proteins. The intricate interplay among various factors leads to a heterogeneous drug response, bringing about significant challenges in comprehending drug mechanisms. Our study applied data-independent acquisition-based mass spectrometry to multidimensional proteome profiling of PROTAC (DIA-MPP) to uncover the efficacy and sensitivity of the PROTAC compound. We profiled the signal transducer and activator of transcription 3 (STAT3) PROTAC degrader in six leukemia and lymphoma cell lines under multiple conditions, demonstrating the pharmacodynamic properties and downstream biological responses. Through comparison between sensitive and insensitive cell lines, we revealed that STAT1 can be regarded as a biomarker for STAT3 PROTAC degrader, which was validated in cells, patient-derived organoids, and mouse models. These results set an example for a comprehensive description of the multidimensional PROTAC pharmacodynamic response and PROTAC drug sensitivity biomarker exploration.


Assuntos
Proteoma , Fator de Transcrição STAT3 , Animais , Camundongos , Humanos , Proteoma/metabolismo , Proteólise , Fator de Transcrição STAT3/metabolismo , Linhagem Celular , Biomarcadores/metabolismo
4.
Cell ; 187(1): 184-203.e28, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181741

RESUMO

We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.


Assuntos
Neoplasias Pulmonares , Proteogenômica , Carcinoma de Pequenas Células do Pulmão , Humanos , Linhagem Celular , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/química , Carcinoma de Pequenas Células do Pulmão/genética , Xenoenxertos , Biomarcadores Tumorais/análise
5.
Artigo em Inglês | MEDLINE | ID: mdl-38192148

RESUMO

OBJECTIVE: In recent years, it has been known that mesenchymal stem cells (MSCs) have the potential to treat osteoarthritis (OA). This study aimed to investigate the effects of intraarticular injection of human adipose-derived stem cells (hADSCs) in a new double-damage rabbit osteoarthritis model. METHODS: The OA model was established surgically first by medial collateral ligament and anterior insertional ligament transection and medical meniscectomy, then by articular cartilage full-thickness defect. At six weeks following surgery, hADSCs were labeled with Enhanced Green Fluorescence Protein expressing lentivirus FG12 and injected into the knee joints. All rabbits were sacrificed at 4- and 8 weeks post-surgery. Assessments were carried out by macroscopic examination, immunohistochemistry staining, magnetic resonance imaging, qRT-PCR and ELISA analysis. RESULTS: At 4- and 8 weeks, hADSCs injection showed less cartilage loss, few fissures and few cracks, decreased volume of joint effusion and cartilage defect measured with MRI. Furthermore, ELISA and qRT-PCR methods showed that hADSCs treatment increased the level of IGF-1. CONCLUSIONS: Our data suggest that hADSC transplantation promotes articular cartilage healing in the double-damage rabbit osteoarthritis model, IGF-1 may play an essential role in the hADSC-based cartilage repair process. Transplantation of hADSCs may be suitable for clinical application in the treatment of osteoarthritis.

6.
Front Immunol ; 14: 1211505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37809094

RESUMO

Inflammation is known to play a critical role in all stages of tumorigenesis; however, less is known about how it predisposes the tissue microenvironment preceding tumor formation. Recessive dystrophic epidermolysis bullosa (RDEB), a skin-blistering disease secondary to COL7A1 mutations and associated with chronic wounding, inflammation, fibrosis, and cutaneous squamous cell carcinoma (cSCC), models this dynamic. Here, we used single-cell RNA sequencing (scRNAseq) to analyze gene expression patterns in skin cells from a mouse model of RDEB. We uncovered a complex landscape within the RDEB dermal microenvironment that exhibited altered metabolism, enhanced angiogenesis, hyperproliferative keratinocytes, infiltration and activation of immune cell populations, and inflammatory fibroblast priming. We demonstrated the presence of activated neutrophil and Langerhans cell subpopulations and elevated expression of PD-1 and PD-L1 in T cells and antigen-presenting cells, respectively. Unsupervised clustering within the fibroblast population further revealed two differentiation pathways in RDEB fibroblasts, one toward myofibroblasts and the other toward a phenotype that shares the characteristics of inflammatory fibroblast subsets in other inflammatory diseases as well as the IL-1-induced inflammatory cancer-associated fibroblasts (iCAFs) reported in various cancer types. Quantitation of inflammatory cytokines indicated dynamic waves of IL-1α, TGF-ß1, TNF, IL-6, and IFN-γ concentrations, along with dermal NF-κB activation preceding JAK/STAT signaling. We further demonstrated the divergent and overlapping roles of these cytokines in inducing inflammatory phenotypes in RDEB patients as well as RDEB mouse-derived fibroblasts together with their healthy controls. In summary, our data have suggested a potential role of inflammation, driven by the chronic release of inflammatory cytokines such as IL-1, in creating an immune-suppressed dermal microenvironment that underlies RDEB disease progression.


Assuntos
Carcinoma de Células Escamosas , Epidermólise Bolhosa Distrófica , Neoplasias Cutâneas , Camundongos , Animais , Humanos , Carcinoma de Células Escamosas/genética , Neoplasias Cutâneas/patologia , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/metabolismo , Epidermólise Bolhosa Distrófica/patologia , Colágeno/metabolismo , Fibroblastos/metabolismo , Citocinas/metabolismo , Interleucina-1/metabolismo , Microambiente Tumoral , Colágeno Tipo VII
7.
Nat Commun ; 14(1): 5809, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726316

RESUMO

Shotgun proteomics is essential for protein identification and quantification in biomedical research, but protein isoform characterization is challenging due to the extensive number of peptides shared across proteins, hindering our understanding of protein isoform regulation and their roles in normal and disease biology. We systematically assess the challenge and opportunities of shotgun proteomics-based protein isoform characterization using in silico and experimental data, and then present SEPepQuant, a graph theory-based approach to maximize isoform characterization. Using published data from one induced pluripotent stem cell study and two human hepatocellular carcinoma studies, we demonstrate the ability of SEPepQuant in addressing the key limitations of existing methods, providing more comprehensive isoform-level characterization, identifying hundreds of isoform-level regulation events, and facilitating streamlined cross-study comparisons. Our analysis provides solid evidence to support a widespread role of protein isoform regulation in normal and disease processes, and SEPepQuant has broad applications to biological and translational research.


Assuntos
Pesquisa Biomédica , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proteômica , Isoformas de Proteínas/genética
8.
Natl Sci Rev ; 10(8): nwad167, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37575948

RESUMO

Normal adjacent tissues (NATs) of hepatocellular carcinoma (HCC) differ from healthy liver tissues and their heterogeneity may contain biological information associated with disease occurrence and clinical outcome that has yet to be fully evaluated at the proteomic level. This study provides a detailed description of the heterogeneity of NATs and the differences between NATs and healthy livers and revealed that molecular features of tumor subgroups in HCC were partially reflected in their respective NATs. Proteomic data classified HCC NATs into two subtypes (Subtypes 1 and 2), and Subtype 2 was associated with poor prognosis and high-risk recurrence. The pathway and immune features of these two subtypes were characterized. Proteomic differences between the two NAT subtypes and healthy liver tissues were further investigated using data-independent acquisition mass spectrometry, revealing the early molecular alterations associated with the progression from healthy livers to NATs. This study provides a high-quality resource for HCC researchers and clinicians and may significantly expand the knowledge of tumor NATs to eventually benefit clinical practice.

9.
Cell Rep ; 42(7): 112690, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37384528

RESUMO

AKT kinase is a key regulator in cell metabolism and survival, and its activation is strictly modulated. Herein, we identify XAF1 (XIAP-associated factor) as a direct interacting protein of AKT1, which strongly binds the N-terminal region of AKT1 to block its K63-linked poly-ubiquitination and subsequent activation. Consistently, Xaf1 knockout causes AKT activation in mouse muscle and fat tissues and reduces body weight gain and insulin resistance induced by high-fat diet. Pathologically, XAF1 expression is low and anti-correlated with the phosphorylated p-T308-AKT signal in prostate cancer samples, and Xaf1 knockout stimulates the p-T308-AKT signal to accelerate spontaneous prostate tumorigenesis in mice with Pten heterozygous loss. And ectopic expression of wild-type XAF1, but not the cancer-derived P277L mutant, inhibits orthotopic tumorigenesis. We further identify Forkhead box O 1 (FOXO1) as a transcriptional regulator of XAF1, thus forming a negative feedback loop between AKT1 and XAF1. These results reveal an important intrinsic regulatory mechanism of AKT signaling.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias , Animais , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Carcinogênese , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
10.
Sci China Life Sci ; 66(7): 1459-1481, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37335463

RESUMO

PIWI-clade proteins harness piRNAs of 24-33 nt in length. Of great puzzles are how PIWI-clade proteins incorporate piRNAs of different sizes and whether the size matters to PIWI/piRNA function. Here we report that a PIWI-Ins module unique in PIWI-clade proteins helps define the length of piRNAs. Deletion of PIWI-Ins in Miwi shifts MIWI to load with shorter piRNAs and causes spermiogenic failure in mice, demonstrating the functional importance of this regulatory module. Mechanistically, we show that longer piRNAs provide additional complementarity to target mRNAs, thereby enhancing the assembly of the MIWI/eIF3f/HuR super-complex for translational activation. Importantly, we identify a c.1108C>T (p.R370W) mutation of HIWI (human PIWIL1) in infertile men and demonstrate in Miwi knock-in mice that this genetic mutation impairs male fertility by altering the property of PIWI-Ins in selecting longer piRNAs. These findings reveal a critical role of PIWI-Ins-ensured longer piRNAs in fine-tuning MIWI/piRNA targeting capacity, proven essential for spermatid development and male fertility.


Assuntos
RNA de Interação com Piwi , Testículo , Humanos , Masculino , Camundongos , Animais , Testículo/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espermatogênese/genética , Proteínas/metabolismo , Fertilidade/genética , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo
11.
EMBO J ; 42(12): e112675, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37092319

RESUMO

Tumor cells surviving hypoxic stress acquire the ability to drive cancer progression. To explore the contribution of dehydrogenases to the low oxygen concentration response, we used siRNAs targeting 163 dehydrogenase-coding genes and discovered that glutamate dehydrogenase 1 (GDH1) plays a critical role in regulating colorectal cancer (CRC) cell survival under hypoxia. We observed that GDH1 deficiency had an inhibitory effect on CRC occurrence and impaired hypoxia-inducible factor 1-alpha (HIF-1α) stability even under hypoxia. Mechanistically, hypoxia triggered p300 recruitment to GDH1, promoting its acetylation at K503 and K527. GDH1 acetylation at K527 induced the formation of a GDH1 complex with EGLN1/HIF-1α; in contrast, GDH1 acetylation at K503 reinforced its affinity for α-ketoglutarate (αKG), and glutamate production. In line with this view, αKG is a product of GDH1 under normoxia, but hypoxia stimulation reversed GDH1 enzyme activity and αKG consumption by the EGLN1/HIF-1α complex, increasing HIF-1α stability and promoting CRC progression. Clinically, hypoxia-modulated GDH1 AcK503/527 can be used as a biomarker of CRC progression and is a potential target for CRC treatment.


Assuntos
Neoplasias Colorretais , Ácido Glutâmico , Humanos , Ácido Glutâmico/metabolismo , Hipóxia , Hipóxia Celular/genética , Transformação Celular Neoplásica , Carcinogênese , Neoplasias Colorretais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Linhagem Celular Tumoral
12.
Adv Sci (Weinh) ; 10(17): e2205818, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37078828

RESUMO

Herein, we observed that nuclear localization of phosphoglycerate dehydrogenase (PHGDH) is associated with poor prognosis in liver cancer, and Phgdh is required for liver cancer progression in a mouse model. Unexpectedly, impairment of Phgdh enzyme activity exerts a slight effect in a liver cancer model. In liver cancer cells, the aspartate kinase-chorismate mutase-tyrA prephenate dehydrogenase (ACT) domain of PHGDH binds nuclear cMyc to form a transactivation axis, PHGDH/p300/cMyc/AF9, which drives chemokine CXCL1 and IL8 gene expression. Then, CXCL1 and IL8 promote neutrophil recruitment and enhance tumor-associated macrophage (TAM) filtration in the liver, thereby advancing liver cancer. Forced cytosolic localization of PHGDH or destruction of the PHGDH/cMyc interaction abolishes the oncogenic function of nuclear PHGDH. Depletion of neutrophils by neutralizing antibodies greatly hampers TAM filtration. These findings reveal a nonmetabolic role of PHGDH with altered cellular localization and suggest a promising drug target for liver cancer therapy by targeting the nonmetabolic region of PHGDH.


Assuntos
Neoplasias Hepáticas , Fosfoglicerato Desidrogenase , Animais , Camundongos , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Interleucina-8 , Microambiente Tumoral
13.
J Proteome Res ; 22(5): 1446-1454, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36751022

RESUMO

The global proteome analysis was limited by the identification of peptides with low abundance or specific physiochemical properties. Here, a one-dimensional online alkaline-pH reverse phase nanoelectrospray-tandem mass spectrometry (alkaline-pH-MS/MS) method was developed and optimized for global proteomic analysis. In this method, peptides were separated on a nanoflow C18 column with an alkaline-pH mobile phase (pH = 8.0) and directly injected into the mass spectrometer. The unique peptides overlapped between alkaline-pH-MS/MS and conventional online low-pH reverse phase nanoelectrospray-tandem mass spectrometry (low-pH-MS/MS) were as low as 45%, strongly indicating that these two methods were complementary to each other. In addition, alkaline-pH-MS/MS showed identification capacity for a higher proportion of peptides with negative grand average of hydropathy (GRAVY) or high isoelectric point (pI). Compared to low-pH-MS/MS, alkaline-pH-MS/MS enabled enrichment preference toward histidine-, lysine-, methionine-, and proline-containing peptides. The complementarity of alkaline-pH-MS/MS and low-pH-MS/MS was further demonstrated for the analysis of tryptic digests from 15 intrahepatic cholangiocarcinoma (iCCA) cell lines. The alternating 60 min alkaline-pH-MS/MS plus 60 min low-pH-MS/MS method outperformed the conventional 120 min low-pH-MS/MS method in both the identification of amino acid variants and protein groups. Therefore, we established the alkaline-pH-MS/MS method as a simple, competitive, alternative method to low-pH-MS/MS for global proteomic analysis.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Proteômica/métodos , Peptídeos/análise , Proteínas do Sistema Complemento , Proteoma/análise , Concentração de Íons de Hidrogênio
14.
Cell Res ; 33(3): 245-257, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36646759

RESUMO

Emerging evidence demonstrates that some metabolic enzymes that phosphorylate soluble metabolites can also phosphorylate a variety of protein substrates as protein kinases to regulate cell cycle, apoptosis and many other fundamental cellular processes. However, whether a metabolic enzyme dephosphorylates protein as a protein phosphatase remains unknown. Here we reveal the gluconeogenic enzyme fructose 1,6-biphosphatase 1 (FBP1) that catalyzes the hydrolysis of fructose 1,6-bisphosphate (F-1,6-BP) to fructose 6-phosphate (F-6-P) as a protein phosphatase by performing a high-throughput screening of metabolic phosphatases with molecular docking followed by molecular dynamics (MD) simulations. Moreover, we identify IκBα as the substrate of FBP1-mediated dephosphorylation by performing phosphoproteomic analysis. Mechanistically, FBP1 directly interacts with and dephosphorylates the serine (S) 32/36 of IκBα upon TNFα stimulation, thereby inhibiting NF-κB activation. MD simulations indicate that the catalytic mechanism of FBP1-mediated IκBα dephosphorylation is similar to F-1,6-BP dephosphorylation, except for higher energetic barriers for IκBα dephosphorylation. Functionally, FBP1-dependent NF-κB inactivation suppresses colorectal tumorigenesis by sensitizing tumor cells to inflammatory stresses and preventing the mobilization of myeloid-derived suppressor cells. Our finding reveals a previously unrecognized role of FBP1 as a protein phosphatase and establishes the critical role of FBP1-mediated IκBα dephosphorylation in colorectal tumorigenesis.


Assuntos
Neoplasias Colorretais , Frutose-Bifosfatase , Humanos , Frutose-Bifosfatase/análise , Frutose-Bifosfatase/metabolismo , NF-kappa B , Inibidor de NF-kappaB alfa , Simulação de Acoplamento Molecular , Carcinogênese , Monoéster Fosfórico Hidrolases , Transformação Celular Neoplásica , Frutose
15.
Proteomics ; 23(3-4): e2100407, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35689503

RESUMO

Phosphorylation is one of the most common post-translational modifications (PTMs) and is closely related to protein activity and function, playing a critical role during cancer development. Quantitative phosphoproteomic strategies have been widely used to study the underlying mechanisms of cancer progression or drug resistance. In this report, we analyzed the association of phosphosite levels originated from our previously reported proteogenomic study in hepatocellular carcinoma (HCC) with clinical parameters, including prognosis, recurrence, and Tumor-Node-Metastasis (TNM) stages. By using both the log-rank test and univariate Cox proportional hazards regression analysis, we found that the abundance levels of 1712 phosphosites were associated with prognosis and those of 393 phosphosites associated with recurrence. Besides, 692 phosphosites had different abundance levels among TNM stages (I, II, III+IV) by Analysis of Variance (ANOVA) test. Gene ontology (GO) biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using proteins with these statistically significant phosphosites. In conclusion, we provided a dataset resource for clinically associated phosphosites in HCC, which may be beneficial to liver cancer related basic research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Prognóstico
16.
J Med Chem ; 65(16): 11034-11057, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35925880

RESUMO

Aberrant hyperactivation of cyclins results in carcinogenesis and therapy resistance in cancers. Direct degradation of the specific cyclin or cyclin-dependent kinase (CDK)-cyclin complex by small-molecule degraders remains a great challenge. Here, we applied the first application of hydrophobic tagging to induce degradation of CDK9-cyclin T1 heterodimer, which is required to keep productive transcription of oncogenes in cancers. LL-K9-3 was identified as a potent small-molecule degrader of CDK9-cyclin T1. Quantitative and time-resolved proteome profiling exhibited LL-K9-3 induced selective and synchronous degradation of CDK9 and cyclin T1. The expressions of androgen receptor (AR) and cMyc were reduced by LL-K9-3 in 22RV1 cells. LL-K9-3 exhibited enhanced anti-proliferative and pro-apoptotic effects compared with its parental CDK9 inhibitor SNS032 and suppressed downstream signaling of CDK9 and AR more effectively than SNS032. Moreover, LL-K9-3 inhibited AR and Myc-driven oncogenic transcriptional programs and exerted stronger inhibitory effects on several intrinsic target genes of AR than the monomeric CDK9 PROTAC (Thal-SNS032).


Assuntos
Quinase 9 Dependente de Ciclina , Neoplasias da Próstata , Núcleo Celular/metabolismo , Ciclina T/genética , Ciclina T/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Humanos , Masculino
17.
Orthop Surg ; 14(9): 2230-2237, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35894841

RESUMO

OBJECTIVE: To investigate the correlation between melatonin and osteoarthritis (OA) in rats. To explore the relevant mechanisms in the occurrence and development of osteoarthritis in rats, and to further understand the disease of osteoarthritis. METHODS: Forty healthy 6-month-old male SD rats were randomly divided into two groups: sham and drug intervention groups. Pre-OA modeling, enzyme-linked immunosorbent assay was employed to detect the levels of IL-1ß, IL-6, COX-2, and melatonin in the serum of the rats in each group. For OA modeling, we administered an injection of papain into the knee cavity of all rats. The levels of IL-1ß, IL-6, and COX-2 in the serum of rats in each group were detected 2 weeks after the modeling. Additionally, 2 weeks after the modeling, the rats in the drug intervention group were intraperitoneally injected with melatonin antagonists. The rats in the sham group were intraperitoneally injected with normal saline for 2 weeks. The levels of IL-1ß, IL-6, and COX-2 in the serum of each group were measured at the second, third, and fourth weeks after the drug intervention, and the levels of melatonin in the serum were measured at the second week after the drug intervention. Finally, the rats were euthanized by cervical dislocation, and pathological sections were collected from the knee joint to observe the pathological tissue changes under a microscope, and Mankin score was determined. The independent samples t-test method was used for analysis. RESULTS: The imaging examination after the drug intervention showed that the modeling of knee osteoarthritis in rats was successful. In the pathological findings, HE staining showed a legible cartilage structure of each layer, with cartilage proliferation and partial cartilage tearing to the radial layer. The tide line was intact; toluidine blue staining revealed more obvious changes. The differences among the mean values of IL-6, IL-1ß, and COX-2 measured in each period were statistically significant (t = 5.50, p < 0.05). The measured mean values of IL-6, IL-1ß, and COX-2 revealed statistically significant differences among the groups (t = 2.01, p < 0.05). The intergroup comparison of the Mankin scores in each period showed statistically significant differences. CONCLUSION: Melatonin may inhibit inflammation and associated oxidative stress on the surface of knee cartilage. It may be related to the repair and regeneration of articular surface cartilage during the development of OA in the rat knee joint.


Assuntos
Cartilagem Articular , Melatonina , Osteoartrite do Joelho , Animais , Masculino , Ratos , Cartilagem Articular/patologia , Ciclo-Oxigenase 2/metabolismo , Inflamação/metabolismo , Interleucina-6 , Articulação do Joelho , Melatonina/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Osteoartrite do Joelho/patologia , Estresse Oxidativo , Papaína , Ratos Sprague-Dawley
18.
J Ethnopharmacol ; 293: 115279, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35405256

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shexiang Baoxin Pill (SBP) and Suxiao Jiuxin Pill (SJP) are traditional Chinese medicines used to treat cardiovascular disease (CVD) in China. However, the mechanism of their therapeutic effect on CVD has not been clearly elucidated yet. AIMS: The aim of this study is to investigate the cardioprotective effect of SBP and SJP in the treatment of acute myocardial infarction (AMI) model rats by applying serum proteomic approach. MATERIALS AND METHODS: The rat model of AMI was generated by ligating the left anterior descending coronary artery. 42 rats were randomly divided into four groups: sham-operating (Sham, n = 10) group, model (Mod, n = 8) group, Shexiang Baoxin pills pretreatment (SBP, n = 12) group and Suxiao Jiuxin pills pretreatment (SJP, n = 12) group. Data Independent Acquisition (DIA) proteomic approach was utilized to investigate the serum proteome from the rat individuals. The differentially expressed proteins were subsequently obtained with bioinformatic analysis. RESULTS: DIA-MS identified 415 proteins within 42 samples, and 84 differentially expressed proteins may contribute to the therapeutic effects of SBP and SJP. GOBP and KEGG pathway analysis of 84 differentially expressed proteins revealed that the proteins were mainly involved in platelet activation and adhesion processes. All 84 differentially expressed proteins presented the same changing tendency in the SBP and SJP groups when compared with the Mod group. Among these 84 proteins, 25 proteins were found to be related to CVD. Among these 25 proteins, ACTB, ACTG1, FGA, FGB, FGG, PF4 and VWF were found to be involved in platelet aggregation and activation. FN1, HSPA5 and YWHAZ were associated with adhesion. CONCLUSIONS: The results of our study suggest that the cardioprotective effects of SBP and SJP are achieved through the modulation of focal adhesion, platelet activation pathways.


Assuntos
Medicamentos de Ervas Chinesas , Infarto do Miocárdio , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Proteômica , Ratos
19.
J Proteomics ; 255: 104500, 2022 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-35101640

RESUMO

Thermogenesis is a promising approach to limit weight gain in response to excess nutrition. In contrast to cold-induced thermogenesis, the molecular and cellular mechanisms of diet-induced thermogenesis (DIT) have not been fully characterized. Here, we explored the response of brown adipose tissue (BAT) and subcutaneous white adipose tissue (sWAT) to high fat diet (HFD) using proteome and phosphoproteome analysis. We observed that after HFD, Uncoupling protein 1 (UCP1) and its phosphorylation were only increased in BAT. Furthermore, proteins involved in fatty acid oxidation, tricarboxylic acid cycle, and oxidative phosphorylation were also upregulated in BAT. Nevertheless, most metabolic related proteins were downregulated in sWAT. We found that these metabolic changes accompanied with different variation of mitochondrial proteins between BAT and sWAT. After HFD, most mitochondrial proteins were decreased in sWAT, but not in BAT. This effect was correlated with decreased mitochondrial ribosomal proteins in sWAT. Finally, through phosphoproteomic analysis, we predicted the activities of kinases in HFD mice and observed that there were more kinases inactivated in sWAT. Finally, this dataset provides a valuable resource for molecular researchers in the fields of obesity and obesity-related disease. SIGNIFICANCE: Thermogenesis is a promising approach to combat obesity in response to excess energy. Nevertheless, the molecular and cellular mechanisms of DIT have not been fully characterized. Herein, we employed mass spectrometry (MS)-based proteomics and phosphoproteomics to identify differentially regulated proteins and phosphosites in BAT and sWAT of mice fed with HFD. This study unveils the differential regulatory networks of HFD in BAT and sWAT, which provides reference omics data to future researchers.


Assuntos
Dieta Hiperlipídica , Proteoma , Tecido Adiposo Marrom , Animais , Metabolismo Energético , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/metabolismo , Termogênese , Proteína Desacopladora 1/metabolismo
20.
Neurol Sci ; 43(6): 3949-3956, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35043357

RESUMO

OBJECTIVE: We investigated the efficacy of low-dose prednisolone (PSL) regimen in patients with generalized myasthenia gravis (MG) post-thymectomy and its correlation with long-term outcome. METHODS: This is a 2-year observational study. The subjects were aged 16-75 years, a Myasthenia Gravis Foundation of America (MGFA) clinical classification of II to IV, generalized MG after thymectomy. We selected a low-dose (5 mg/day) initiation and slowly incrementing (10 mg every 4 weeks) PSL therapy regimen. We collected the clinical characteristics, treatment-related data, and 2-year clinical outcomes of MG patients, and analyzed the effect of various factors on the achievement of the treatment target. RESULTS: Sixty-three generalized MG were recruited in our study. After 2 years of observation, 52 patients (82.5%) of generalized MG achieved treatment goal. Based on the maximum daily dose of PSL received, the MG patients were divided into 20 mg, 30 mg, and ≥ 40 mg groups. Subgroup analysis showed that the 20 mg group had the highest rate of achieving the treatment target (94.9%), followed by the 30 mg group (73.3%) and the lowest rate was among the ≥ 40 mg group (44.4%). Using a multivariate logistic regression analysis, we identified that the maximum daily dose of PSL 20 mg was the only positive, independent predictor of treatment goal achievement after 2 years. CONCLUSION: Low-dose initiation, slowly incrementing PSL therapy is feasible for generalized MG patients after thymectomy. Early response to low-dose PSL therapy may predict better long-term outcomes.


Assuntos
Miastenia Gravis , Timectomia , Corticosteroides/uso terapêutico , Humanos , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/cirurgia , Prednisolona/uso terapêutico , Prognóstico , Estudos Retrospectivos , Timectomia/efeitos adversos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...