Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gene Med ; 26(7): e3718, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38979822

RESUMO

BACKGROUND: Icariin (ICA) inhibits inflammatory response in various diseases, but the mechanism underlying ICA treating airway inflammation in asthma needs further understood. We aimed to predict and validate the potential targets of ICA against asthma-associated airway inflammation using network pharmacology and experiments. METHODS: The ovalbumin-induced asthma-associated airway inflammation mice model was established. The effects of ICA were evaluated by behavioral, airway hyperresponsiveness, lung pathological changes, inflammatory cell and cytokines counts. Next, the corresponding targets of ICA were mined via the SEA, CTD, HERB, PharmMapper, Symmap database and the literature. Pubmed-Gene and GeneCards databases were used to screen asthma and airway inflammation-related targets. The overlapping targets were used to build an interaction network, analyze gene ontology and enrich pathways. Subsequently, flow cytometry, quantitative real-time PCR and western blotting were employed for validation. RESULTS: ICA alleviated the airway inflammation of asthma; 402 targets of ICA, 5136 targets of asthma and 4531 targets of airway inflammation were screened; 216 overlapping targets were matched and predicted ICA possesses the potential to modulate asthmatic airway inflammation by macrophage activation/polarization. Additionally, ICA decreased M1 but elevated M2. Potential targets that were disrupted by asthma inflammation were restored by ICA treatment. CONCLUSIONS: ICA alleviates airway inflammation in asthma by inhibiting the M1 polarization of alveolar macrophages, which is related to metabolic reprogramming. Jun, Jak2, Syk, Tnf, Aldh2, Aldh9a1, Nos1, Nos2 and Nos3 represent potential targets of therapeutic intervention. The present study enhances understanding of the anti-airway inflammation effects of ICA, especially in asthma.


Assuntos
Asma , Modelos Animais de Doenças , Flavonoides , Ativação de Macrófagos , Macrófagos Alveolares , Farmacologia em Rede , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Camundongos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Citocinas/metabolismo , Ovalbumina , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Feminino
2.
J Gene Med ; 26(7): e3710, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967229

RESUMO

BACKGROUND: Patients with non-small cell lung cancer (NSCLC) are susceptible to coronavirus disease-2019 (COVID-19), but current treatments are limited. Icariside II (IS), a flavonoid compound derived from the plant epimedin, showed anti-cancer,anti-inflammation and immunoregulation effects. The present study aimed to evaluate the possible effect and underlying mechanisms of IS on NSCLC patients with COVID-19 (NSCLC/COVID-19). METHODS: NSCLC/COVID-19 targets were defined as the common targets of NSCLC (collected from The Cancer Genome Atlas database) and COVID-19 targets (collected from disease database of Genecards, OMIM, and NCBI). The correlations of NSCLC/COVID-19 targets and survival rates in patients with NSCLC were analyzed using the survival R package. Prognostic analyses were performed using univariate and multivariate Cox proportional hazards regression models. Furthermore, the targets in IS treatment of NSCLC/COVID-19 were defined as the overlapping targets of IS (predicted from drug database of TMSCP, HERBs, SwissTarget Prediction) and NSCLC/COVID-19 targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of these treatment targets were performed aiming to understand the biological process, cellular component, molecular function and signaling pathway. The hub targets were analyzed by a protein-protein interaction network and the binding capacity with IS was characterized by molecular docking. RESULTS: The hub targets for IS in the treatment of NSCLC/COVID-19 includes F2, SELE, MMP1, MMP2, AGTR1 and AGTR2, and the molecular docking results showed that the above target proteins had a good binding degree to IS. Network pharmacology showed that IS might affect the leucocytes migration, inflammation response and active oxygen species metabolic process, as well as regulate the interleukin-17, tumor necrosus factor and hypoxia-inducible factor-1 signaling pathway in NSCLC/COVID-19. CONCLUSIONS: IS may enhance the therapeutic efficacy of current clinical anti-inflammatory and anti-cancer therapy to benefit patients with NSCLC combined with COVID-19.


Assuntos
COVID-19 , Carcinoma Pulmonar de Células não Pequenas , Flavonoides , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Farmacologia em Rede , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , COVID-19/virologia , COVID-19/metabolismo , Flavonoides/uso terapêutico , Flavonoides/química , Flavonoides/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Tratamento Farmacológico da COVID-19 , Mapas de Interação de Proteínas/efeitos dos fármacos , Prognóstico
3.
J Inflamm Res ; 16: 6195-6209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38145012

RESUMO

Purpose: Tingli Dazao Xiefei Decoction (TDXD) is a Traditional Chinese Medicine (TCM) formula used to treat acute lung injury (ALI). However, the precise mechanism of TDXD in treating ALI remains unclear. We investigated the therapeutic mechanism of TDXD against ALI using a complementary approach combining network pharmacology, molecular docking, and in vitro and in vivo experiments. Material and Methods: Potential drug targets of TDXD and relevant target genes associated with ALI were retrieved from Chinese medicines and disease genes databases. Bioinformatics technology was employed to screen potential active ingredients and core targets. Validation experiments were conducted using a lipopolysaccharide (LPS)-induced ALI mouse (C57BL/6J) model, LPS-induced inflammatory RAW264.7 cells, and molecular docking between active compounds of TDXD and potential targets. Results: Network pharmacology suggested that the mechanism of TDXD against ALI involved phosphoinositide 3-kinase (PI3K) / protein kinase B (AKT) / phosphatase and tensin homolog (PTEN) and Janus kinase 2 (JAK2) / signal transducer and activator of transcription 3 (STAT3) pathways. Quercetin, ß-sitosterol, kaempferol, isorhamnetin, and L-stepholidine were identified as the main active compounds of TDXD that exerted anti-ALI effects. Molecular docking indicated that these compounds exhibited good binding capabilities (≤ -5kcal/mol) to key targets in PI3K/AKT/PTEN and JAK2/STAT3 signaling pathways. In the animal model, TDXD alleviated injuries and inflammatory responses in lung tissues, accompanied by inhibition of expression of tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), STAT3, and Suppressor of Cytokine Signaling 3 (SOCS3) mRNA, and key proteins in PI3K/AKT/PTEN and JAK2/STAT3 pathways (all P values < 0.05). Cell based experiments showed that TDXD dose-dependently inhibited the expression of essential proteins in PI3K/AKT/PTEN and JAK2/STAT3 pathways (P < 0.05). Conclusion: This study revealed that the mechanism of TDXD in ALI treatment might involve simultaneous regulation of PI3K/AKT/PTEN and JAK2/STAT3 pathways.

4.
Phytomedicine ; 111: 154646, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36645975

RESUMO

BACKGROUND: Obese asthma is one of the important asthma phenotypes that have received wide attention in recent years. Excessive oxidative stress and different inflammatory endotypes may be important reasons for the complex symptoms, frequent aggravation, and resistance to traditional treatments of obese asthma. Apigenin (API), is a flavonoid natural small molecule compound with good anti-inflammatory and antioxidant activity in various diseases and proved to have the potential efficacy to combat obese asthma. METHODS: In vivo, this study fed C57BL/6 J mice with high-fat diets(HFD)for 12 weeks and then stimulated them with OVA for 6 weeks to establish a model of chronic obese asthma, while different doses of oral API or dexamethasone were used for therapeutic interventions. In vitro, this study used HDM to stimulate human bronchial cells (HBEs) to establish the model and intervened with API or Selonsertib (SEL). RESULTS: This study clarified that OVAinduced a type of mixed granulocytic asthma with elevated neutrophils and eosinophils in obese male mice fed with long-term HFD, which also exhibited mixed TH17/TH1/TH2 inflammation. Apigenin effectively suppressed this complex inflammation and acted as a regulator of immune homeostasis. Meanwhile, apigenin reduced AHR, inflammatory cell infiltration, airway epithelial cell apoptosis, airway collagen deposition, and lung oxidative stress via the ROS-ASK1-MAPK pathway in an obese asthma mouse model. In vitro, this study found that apigenin altered the binding status of TRAF6 to ASK1, inhibited ASK1 phosphorylation, and protected against ubiquitin-dependent degradation of ASK1, suggesting that ROS-activated ASK1 may be an important target for apigenin to exert anti-inflammatory and anti-apoptotic effects. To further verify the intervention mechanism, this study clarified that apigenin improved cell viability and mitochondrial function and inhibited apoptosis by interfering with the ROS-ASK1-MAPK pathway. CONCLUSIONS: This study demonstrates for the first time the therapeutic effect of apigenin in chronic obese asthma and further clarifies its potential therapeutic targets. In addition, this study clarifies the specificity of chronic obese asthma and provides new options for its treatment.


Assuntos
Apigenina , Asma , Animais , Humanos , Masculino , Camundongos , Apigenina/farmacologia , Apoptose , Asma/metabolismo , Células Epiteliais/metabolismo , Homeostase , Inflamação/metabolismo , Pulmão , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Espécies Reativas de Oxigênio/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
5.
Respir Res ; 22(1): 188, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183011

RESUMO

Xuan-bai-cheng-qi decoction (XCD), a traditional Chinese medicine (TCM) prescription, has been widely used to treat a variety of respiratory diseases in China, especially to seriously infectious diseases such as acute lung injury (ALI). Due to the complexity of the chemical constituent, however, the underlying pharmacological mechanism of action of XCD is still unclear. To explore its protective mechanism on ALI, firstly, a network pharmacology experiment was conducted to construct a component-target network of XCD, which identified 46 active components and 280 predicted target genes. Then, RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs) between ALI model rats treated with and without XCD and 753 DEGs were found. By overlapping the target genes identified using network pharmacology and DEGs using RNA-seq, and subsequent protein-protein interaction (PPI) network analysis, 6 kernel targets such as vascular epidermal growth factor (VEGF), mammalian target of rapamycin (mTOR), AKT1, hypoxia-inducible factor-1α (HIF-1α), and phosphoinositide 3-kinase (PI3K) and gene of phosphate and tension homology deleted on chromsome ten (PTEN) were screened out to be closely relevant to ALI treatment. Verification experiments in the LPS-induced ALI model rats showed that XCD could alleviate lung tissue pathological injury through attenuating proinflammatory cytokines release such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1ß. Meanwhile, both the mRNA and protein expression levels of PI3K, mTOR, HIF-1α, and VEGF in the lung tissues were down-regulated with XCD treatment. Therefore, the regulations of XCD on PI3K/mTOR/HIF-1α/VEGF signaling pathway was probably a crucial mechanism involved in the protective mechanism of XCD on ALI treatment.


Assuntos
Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/prevenção & controle , Medicamentos de Ervas Chinesas/uso terapêutico , Lipopolissacarídeos/toxicidade , Farmacologia em Rede/métodos , Análise de Sequência de RNA/métodos , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...