Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Membranes (Basel) ; 14(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38786932

RESUMO

This study used polyacrylonitrile (PAN) and heat-treated polyacrylonitrile (H-PAN) membranes to enrich nutmeg essential oils, which have more complex compositions compared with common oils. The oil rejection rate of the H-PAN membrane was higher than that of the PAN membrane for different oil concentrations of nutmeg essential oil-in-water emulsions. After heat treatment, the H-PAN membrane showed a smaller pore size, narrower pore size distribution, a rougher surface, higher hydrophilicity, and higher oleophobicity. According to the GC-MS results, the similarities of the essential oils enriched by the PAN and H-PAN membranes to those obtained by steam distillation (SD) were 0.988 and 0.990, respectively. In addition, these two membranes also exhibited higher essential oil rejection for Bupleuri Radix, Magnolia Officinalis Cortex, Caryophylli Flos, and Cinnamomi Cortex essential oil-in-water emulsions. This work could provide a reference for membrane technology for the non-destructive separation of oil with complex components from oil-in-water emulsions.

2.
J Therm Biol ; 119: 103752, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38194751

RESUMO

Heat stress can lead to hormonal imbalances, weakened immune system, increased metabolic pressure on the liver, and ultimately higher animal mortality rates. This not only seriously impairs the welfare status of animals, but also causes significant economic losses to the livestock industry. Due to its rich residual bioactive components and good safety characteristics, traditional Chinese medicine (TCM) residue is expected to become a high-quality feed additive with anti-oxidative stress alleviating function. This study focuses on the potential of Shengxuebao mixture herbal residue (SXBR) as an anti-heat stress feed additive. Through the UPLC (ultra performance liquid chromatography) technology, the average residue rate of main active ingredients from SXBR were found to be 25.39%. SXBR were then added into the basal diet of heat stressed New Zealand rabbits at the rates of 5% (SXBRl), 10% (SXBRm) and 20% (SXBRh). Heat stress significantly decreased the weight gain, as well as increased neck and ear temperature, drip loss in meat, inflammation and oxidative stress. Also, the hormone levels were disrupted, with a significant increase in serum levels of CA, COR and INS. After the consumption of SXBR in the basal diet for 3 weeks, the weight of New Zealand rabbits increased significantly, and the SXBRh group restored the redness value of the meat to a similar level as the control group. Furthermore, the serum levels T3 thyroid hormone in the SXBRh group and T4 thyroid hormone in the SXBRm group increased significantly, the SXBRh group showed a significant restoration in inflammation markers (IL-1ß, IL-6, and TNF-α) and oxidative stress markers (total antioxidant capacity, HSP-70, MDA, and ROS) levels. Moreover, the real-time fluorescence quantitative PCR analysis found that, the expression levels of antioxidant genes such as Nrf2, HO-1, NQO1, and GPX1 were significantly upregulated in the SXBRh group, and the expression level of the Keap1 gene was significantly downregulated. Additionally, the SXBRm group showed significant upregulation in the expression levels of HO-1 and NQO1 genes. Western blot experiments further confirmed the up-regulation of Nrf2, Ho-1 and NQO1 proteins. This study provides a strategy for the utilization of SXBR and is of great significance for the green recycling of the TCM residues, improving the development of animal husbandry and animal welfare.


Assuntos
Antioxidantes , Transtornos de Estresse por Calor , Coelhos , Animais , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Estresse Oxidativo , Resposta ao Choque Térmico , Inflamação , Transtornos de Estresse por Calor/veterinária
3.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4545-4551, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802795

RESUMO

It has become a common consensus that resource conservation and intensive recycling for improving resource utilization efficiency is an important way to achieve carbon peak and carbon neutrality(dual carbon). Traditonal Chinese medicine(TCM)resources as national strategic resources are the material basis and fundamental guarantee for the development of TCM industry and health services. However, the rapid growth of China's TCM industry and the continuous expansion and extension of the industrial chain have exposed the low efficiency of TCM resources. Resource waste and environmental pollution caused by the treatment and discharge of TCM waste have emerged as major problems faced by the development of the industry, which has aroused wide concern. Considering the dual carbon goals, this paper expounds the role and potential of TCM resource recycling and circular economy industry development. Taking the typical model of TCM resource recycling as the case of circular economy industry in reducing carbon source and increasing carbon sink, this paper puts forward the suggestions for the TCM circular economy industry serving the double carbon goals. The suggestions mainly include strengthening the policy and strategic leading role of the double carbon goals, building an objective evaluation system of low-carbon emission reduction in the whole industrial chain of TCM resources, building an industrial demonstration park for the recycling of TCM resources, and promoting the establishment of a circular economy system of the whole industrial chain of TCM resources. These measures are expected to guide the green transformation of TCM resource industry from linear economic model to circular economy model, provide support for improving the utilization efficiency and sustainable development of TCM resources, and facilitate the low-carbon and efficient development of TCM resource industry and the achievement of the double carbon goals.


Assuntos
Reutilização de Equipamento , Medicina Tradicional Chinesa , Objetivos , Poluição Ambiental , Desenvolvimento Econômico , Carbono , China
4.
Drug Des Devel Ther ; 17: 2401-2420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37609432

RESUMO

Introduction: Neuroinflammation is one of the major pathogeneses in Alzheimer's disease (AD) and mainly involves abnormal inflammatory activation of microglia by multiple pathological stimuli. The treatment of AD remains a major challenge due to the multifactorial characterization of AD and the inefficient ability of therapeutic drugs to permeate through the blood‒brain barrier (BBB). Accordingly, drug combination treatment and drug carrier delivery have become important therapeutic tools for the treatment of multifactorial diseases, especially AD. Methods: Inflammatory cytokine levels in microglia, including NO, TNF-α, IL-1ß, IL-4, and IL-10, were detected. The Morris water maze and object location task were used to investigate the learning and memory functions of APP/PS1 mice in different treatment groups. The number of neurons and plasticity of synapses were evaluated by immunofluorescence double labelling. Additionally, the ratio of ß-amyloid plaques and the number of activated microglia were evaluated by immunofluorescence staining. The concentrations of ß-amyloid plaques and inflammatory factors in the hippocampus were determined by ELISA. Microglia-derived exosomes (Exos) were extracted and purified by size exclusion chromatography. The distribution of exosomes and drugs was investigated in vitro and in vivo. Results: Compared to single drug interventions, the combination of Ber and Pal (Ber/Pal) modulated microglial inflammatory cytokine levels. Ber/Pal promoted the recovery of learning and memory impairment in APP/PS1 mice. Immunofluorescence staining indicated that Ber/Pal restored neurons, inhibited Aß plaque formation and microglial activation, and regulated the secretion of inflammatory factors. Exos promoted the accumulation of drugs in cells and tissues and improved the targeting of drugs across the BBB. Conclusion: Ber/Pal could offer a synergistic and more comprehensive therapeutic effect in AD. Additionally, the microglia-derived Exos-Ber/Pal delivery system promoted the targeting and permeation of drugs into the brain, suggesting a creative strategy for targeting AD therapy by regulating neuroinflammation in microglial cells.


Assuntos
Doença de Alzheimer , Berberina , Exossomos , Animais , Camundongos , Berberina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doenças Neuroinflamatórias , Placa Amiloide , Peptídeos beta-Amiloides , Citocinas
5.
Phytother Res ; 37(1): 342-357, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36089660

RESUMO

Berberine, which is a potential antidepressant, exhibits definite efficiency in modulating the gut microbiota. Depressive behaviors in mice induced using chronic unpredictable mild stress (CUMS) stimulation were evaluated by behavioral experiments. The markers of neurons and synapses were measured using immunohistochemical staining. An enzyme-linked immunosorbent assay was adopted to analyze serum inflammatory cytokines levels and neurotransmitters were evaluated by LC-MS/MS. Untargeted metabolomics of tryptophan metabolism was further performed using LC-MS/MS. The target enzymes of berberine involved in tryptophan metabolism were assayed using AutoDock and GRMACS softwares. Then, antibiotics was utilized to induce intestinal flora disturbance. Berberine improved the depressive behaviors of mice in a microbiota-dependent manner. Increased neurons and synaptic plasticity were observed following berberine treatment. Meanwhile, berberine decreased serum levels of TNF-α, IL-1ß, and IL-4 and increased levels of IL-10. Moreover, berberine induced retraction of the abnormal neurotransmitters and metabolomics assays revealed that berberine promoted tryptophan biotransformation into serotonin and inhibited the kynurenine metabolism pathway, which was attributed to the potential agonist of tryptophan 5-hydroxylase 1 (TPH1) and inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1). In conclusion, berberine improves depressive symptoms in CUMS-stimulated mice by targeting both TPH1 and IDO1, which are involved in tryptophan metabolism.


Assuntos
Berberina , Triptofano , Camundongos , Animais , Triptofano/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Berberina/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neurotransmissores , Estresse Psicológico/tratamento farmacológico , Modelos Animais de Doenças , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Triptofano Hidroxilase
6.
Membranes (Basel) ; 12(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557154

RESUMO

Ceramic membrane has an important application prospect in industrial acid solution treatment. Enhancement of the acid resistance is the key strategy to optimize the membrane treatment effect. This work reports a core-shell structured membrane fabricated on alumina ceramic substrates via a one-step in situ hydrothermal method. The acid resistance of the modified membrane was significantly improved due to the protection provided by a chemically stable carbon layer. After modification, the masses lost by the membrane in the hydrochloric acid solution and the acetic acid solution were sharply reduced by 90.91% and 76.92%, respectively. Kinetic models and isotherm models of adsorption were employed to describe acid adsorption occurring during the membrane process and indicated that the modified membrane exhibited pseudo-second-order kinetics and Langmuir model adsorption. Compared to the pristine membrane, the faster adsorption speed and the lower adsorption capacity were exhibited by the modified membrane, which further had a good performance with treating various kinds of acid solutions. Moreover, the modified membrane could be recycled without obvious flux decay. This modification method provides a facile and efficient strategy for the fabrication of acid-resistant membranes for use in extreme conditions.

7.
Membranes (Basel) ; 12(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36005654

RESUMO

Due to the diversity and complexity of the components in traditional Chinese medicine (TCM) extracts, serious membrane fouling has become an obstacle that limits the application of membrane technology in TCM. Pectin, a heteropolysaccharide widely existing in plant cells, is the main membrane-fouling substance in TCM extracts. In this study, a hydrophilic hybrid coating was constructed on the surface of a polyvinylidene fluoride (PVDF) ultrafiltration (UF) membrane co-deposited with polydopamine (pDA) and (3-Aminopropy) triethoxysilane (KH550) for pectin antifouling. Characterization analysis showed that hydrophilic coating containing hydrophilic groups (-NH3, Si-OH, Si-O-Si) formed on the surface of the modified membrane. Membrane filtration experiments showed that, compared with a matched group (FRR: 28.66%, Rr: 26.87%), both the flux recovery rate (FRR) and reversible pollution rate (Rr) of the pDA and KH550 coated membrane (FRR: 48.07%, Rr: 44.46%) increased, indicating that pectin absorbed on the surface of membranes was more easily removed. Based on the extended Derjaguin-Laudau-Verwey-Overbeek (XDLVO) theory, the fouling mechanism of a PVDF UF membrane caused by pectin was analyzed. It was found that, compared with the pristine membrane (144.21 kT), there was a stronger repulsive energy barrier (3572.58 kT) to confront the mutual adsorption between the coated membrane and pectin molecule. The total interface between the modified membrane and the pectin molecule was significantly greater than the pristine membrane. Therefore, as the repulsion between them was enhanced, pectin molecules were not easily adsorbed on the surface of the coated membrane.

8.
Phytother Res ; 36(7): 2964-2981, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35583808

RESUMO

Amelioration of neuroinflammation via modulating microglia is a promising approach for cerebral ischemia therapy. The aim of the present study was to explore gut-brain axis signals in berberine-modulating microglia polarization following cerebral ischemia. The potential pathway was determined through analyzing the activation of the vagus nerve, hydrogen sulfide (H2 S) metabolism, and cysteine persulfides of transient receptor potential vanilloid 1 (TRPV1) receptor. The cerebral microenvironment feature was explored with a metabolomics assay. The data indicated that berberine ameliorated behavioral deficiency in transient middle cerebral artery occlusion rats through modulating microglia polarization and neuroinflammation depending on microbiota. Enhanced vagus nerve activity following berberine treatment was blocked by antibiotic cocktails, capsazepine, or sodium molybdate, respectively. Berberine-induced H2 S production was responsible for vagus nerve stimulation achieved through assimilatory and dissimilatory sulfate reduction with increased synthetic enzymes. Sulfation of the TRPV1 receptor resulted in vagus nerve activation and promoted the c-fos and ChAT in the nucleus tractus solitaries with berberine. Sphingolipid metabolism is the primary metabolic characteristic with berberine in the cerebral cortex, hippocampus, and cerebral spinal fluid disrupted by antibiotics. Berberine, in conclusion, modulates microglia polarization in a microbiota-dependent manner. H2 S stimulates the vagus nerve through TRPV1 is responsible for the berberine-induced gut-brain axis signal transmission. Sphingolipid metabolism might mediate the neuroinflammation amelioration following vagus afferent fiber activation.


Assuntos
Berberina , Isquemia Encefálica , Sulfeto de Hidrogênio , Microbiota , Animais , Berberina/farmacologia , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Microglia/metabolismo , Ratos , Esfingolipídeos/metabolismo , Nervo Vago/metabolismo
9.
Drug Des Devel Ther ; 16: 931-950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35391788

RESUMO

Background: Abnormal sphingolipid metabolism is closely related to the occurrence and development of Alzheimer's disease (AD). With heat-clearing and detoxifying effects, Huanglian Jiedu decoction (HLJDD) has been used to treat dementia and improve learning and memory impairments. Purpose: To study the therapeutic effect of HLJDD on AD as it relates to sphingolipid metabolism. Methods: The level of sphingolipids in the brains of APP/PS1 mice and in the supernatant of ß-amyloid (Aß)25-35-induced BV2 microglia was detected by HPLC-QTOF-MS and HPLC-QTRAP-MS techniques, respectively. The co-expression of ionized calcium-binding adapter molecule 1 (Iba1) and Aß as well as four enzymes related to sphingolipid metabolism, including serine palmitoyltransferase 2 (SPTLC2), cer synthase 2 (CERS2), sphingomyelin phosphodiesterase 1 (SMPD1), and sphingomyelin synthase 1 (SGMS1), in the brains of APP/PS1 mice were evaluated by immunofluorescence double labelling. In addition, real-time quantitative reverse transcription-polymerase chain reaction was conducted to determine the mRNA expression of SPTLC2, CERS2, SMPD1, SGMS1, galactosylceramidase (GALC), and sphingosine kinase 2 (SPHK2) in Aß25-35-stimulated BV2 microglia. Results: Abnormal sphingolipid metabolism was observed both in APP/PS1 mouse brain tissues and Aß25-35-stimulated BV2 cells. The levels of sphingosine, sphinganine, sphingosine-1-phosphate, sphinganine-1-phosphate and sphingomyelin were significantly reduced, while the levels of ceramide-1-phosphate, ceramide, lactosylceramide and hexosylceramide significantly increased in Aß25-35-stimulated BV2 cells. In AD mice, more microglia were clustered in the Aß-positive region. The decreased level of SGMS1 and increased levels of CERS2, SPTLC and SMPD1 were also found. In addition, the expressions of SPTLC2, CERS2, and SMPD1 in Aß25-35-stimulated BV2 cells were increased significantly, while the expressions of GALC, SPHK2, and SGMS1 were decreased. These changes all showed a significant correction after HLJDD treatment. Conclusion: HLJDD is a good candidate for treating AD. This study provides a novel perspective on the potential roles of the sphingolipid metabolism in AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Ceramidas/metabolismo , Ceramidas/uso terapêutico , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Fosfatos/uso terapêutico , Esfingolipídeos
10.
Membranes (Basel) ; 12(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35323760

RESUMO

This study examined the behavior and penetration mechanisms of typical phenolic (benzoic) acids, which determine their observed penetration rates during membrane separation, focusing on the influence of electrostatic and hydrophobic solute/membrane interactions. To understand the effects of hydrophobicity and electrostatic interaction on membrane filtration, the observed penetration of five structurally similar phenolic acids was compared with regenerated cellulose (RC) and polyamide (PA) membranes at different solute concentrations and solution pHs. Variation partitioning analysis (VPA) was performed to calculate the relative contributions of electrostatic and hydrophobic effects. The penetration of phenolic acids was mainly influenced by the electrostatic interaction, with salicylic acid having the highest penetration. Penetration of phenolic acids through the PA membrane decreased from 98% at pH 3.0 to 30-50% at pH 7.4, indicating the dominance of the electrostatic interaction. Moreover, based on its hydrophobicity and greater surface charge, the PA membrane could separate binary mixtures of protocatechuic/salicylic acid and 4-hydroxybenzoic/salicylic acid at pH 9.0, with separation factors of 1.81 and 1.78, respectively. These results provide a greater understanding of solute/membrane interactions and their effect on the penetration of phenolic acids through polymeric ultrafiltration membranes.

11.
Drug Des Devel Ther ; 16: 325-342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173416

RESUMO

BACKGROUND: Serious mental illness is a disease with complex etiological factors that requires multiple interventions within a holistic disease system. With heat-clearing and detoxifying effects, Coptis chinensis Franch. is mainly used to treat serious mental illness. AIM OF THE STUDY: To explore the underlying mechanisms and therapeutic effect by which Coptis chinensis Franch. treats serious mental illnesses at a holistic level. METHODS: A viable network pharmacology approach was adopted to obtain the potential active ingredients of Coptis chinensis Franch., and serious mental illnesses-related targets and signaling pathways. The interactions between crucial target HTR2A and constituents were verified by molecular docking, and the dynamic behaviors of binding were studied by molecular dynamics simulation. In addition, the anti-anxiety effect of Rhizoma Coptidis (the roots of Coptis chinensis Franch.) extract on lipopolysaccharide-stimulated mice was verified. The anxiety-like behavior was measured through the elevated plus-maze test, light-dark box test, and open field test. Radioimmunoassays detected the levels of interleukin-1ß, tumor necrosis factor-α, interleukin-10, interleukin-4, 5-hydroxytryptamine, and dopamine in the serum, hippocampus, medial prefrontal cortex, and amygdala. Meanwhile, immunohistochemistry protocols for the assessment of neuronal loss (neuron-specific nuclear protein) and synaptic alterations (Synapsin I) were performed in the hippocampus. RESULTS: Based on scientific analysis of the established networks, serious mental illnesses-related targets mostly participated in the calcium signaling pathway, cyclic adenosine monophosphate signaling pathway, mitogen-activated protein kinase signaling pathway, serotonergic and dopaminergic synapse. Molecular docking and molecular dynamics simulation studies illustrated that berberine, epiberberine, palmatine, and coptisine presented favorable binding patterns with HTR2A. The in vivo experiments confirmed that Rhizoma Coptidis extract ameliorated anxiety-like behaviors by improving the survival of neurons, regulating synaptic plasticity, and inhibiting neuroinflammation. CONCLUSION: These findings in the present study led to potential preventative and therapeutic strategies for serious mental illnesses with traditional Chinese medicine.


Assuntos
Coptis , Medicamentos de Ervas Chinesas , Transtornos Mentais , Animais , Coptis/química , Coptis chinensis , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Farmacologia em Rede
12.
PeerJ ; 10: e12759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35036109

RESUMO

Catalpol significantly reduces triptolide-induced hepatotoxicity, which is closely related to autophagy. The aim of this study was to explore the unclear protective mechanism of catalpol against triptolide. The detoxification effect of catalpol on triptolide was investigated in HepaRG cell line. The detoxification effects were assessed by measuring cell viability, autophagy, and apoptosis, as well as the endoplasmic reticulum stress protein and mRNA expression levels. We found that 5-20 µg/L triptolide treatments increased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), as well as the expression of autophagy proteins including LC3 and Beclin1. The expression of P62 was downregulated and the production of autophagosomes was increased, as determined by transmission electron microscope and monodansylcadaverine staining. In contrast, 40 µg/L catalpol reversed these triptolide-induced changes in the liver function index, autophagy level, and apoptotic protein expression, including Cleaved-caspase3 and Cleaved-caspase9 by inhibiting excessive autophagy. Simultaneously, catalpol reversed endoplasmic reticulum stress, including the expression of PERK, which regulates autophagy. Moreover, we used the PERK inhibitor GSK2656157 to prove that the PERK-ATF4-CHOP pathway of the unfolded protein response is an important pathway that could induce autophagy. Catalpol inhibited excessive autophagy by suppressing the PERK pathway. Altogether, catalpol protects against triptolide-induced hepatotoxicity by inhibiting excessive autophagy via the PERK-ATF4-CHOP pathway. The results of this study are beneficial to clarify the detoxification mechanism of catalpol against triptolide-induced hepatotoxicity and to promote the application of triptolide.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , eIF-2 Quinase , Humanos , eIF-2 Quinase/genética , Autofagia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fator 4 Ativador da Transcrição/genética
13.
Adv Healthc Mater ; 11(8): e2101745, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35037424

RESUMO

Resistance and tolerance of biofilms to antibiotics is the greatest challenge in the treatment of bacterial infections. Therefore, developing an effective strategy against biofilms is a top priority. Liposomes are widely used as antibiotic drug carriers; however, common liposomes lack affinity for biofilms. Herein, biofilm-targeted antibiotic liposomes are created by simply adjusting their cholesterol content. The tailored liposomes exhibit significantly enhanced bacterial inhibition and biofilm eradication effects that are positively correlated with the cholesterol content of liposomes. The experiments further demonstrate that this enhanced effect can be ascribed to the effective drug release through the pores, which are formed by the combination of cholesterol microdomains in liposomal lipid bilayers with membrane-damaged toxins in biofilms. Consequently, liposome encapsulation with a high cholesterol concentration improves noticeably the pharmacodynamics and biocompatibility of antibiotics after pulmonary administration. This work may provide a new direction for the development of antibiofilm formulations that can be widely used for the treatment of infections caused by bacterial biofilms.


Assuntos
Antibacterianos , Lipossomos , Antibacterianos/farmacologia , Biofilmes , Colesterol , Portadores de Fármacos/farmacologia , Lipossomos/farmacologia , Testes de Sensibilidade Microbiana
14.
J Ethnopharmacol ; 287: 114952, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-34968661

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tripterygium wilfordii Hook. f. (TW) is widely used to treat autoimmune and inflammatory diseases; however, its development and application is limited by its significant association with liver injury. The compound formula Qingluotongbi (QLT) employs TW as its main component and is used to treat rheumatoid arthritis with no adverse reactions, suggesting that QLT may reduce the liver toxicity of TW. AIM OF THE STUDY: We examined whether TW interferes with lipid metabolism to induce liver injury, and evaluated the protective effect of QLT in in vivo and in vitro experiments. MATERIALS AND METHODS: After administration of QLT and its ingredients, HepaRG cells and SD rats were tested for biochemical indicators, hepatocytes lipid changes, and rat liver pathological changes, and then we analyzed for the gene expression of liver X receptor α (LXRα), endoplasmic reticulum stress (ERS) key proteins, sterol regulatory element binding protein-1c (SREBP-1c), and lipid-synthesizing enzymes. In HepaRG cells, the protein expression of glucose-regulated protein 78 kDa (GRP78) and LXRα was detected after addition of an LXRα inhibitor, LXRα agonist, and ERS inhibitor. RESULTS: TW caused significant elevation of biochemical indicators and lipid droplet deposition in hepatocytes, as well as upregulated the gene expression of LXRα, ERS key proteins, SREBP-1c, and lipid-synthesizing enzymes in both in vitro and in vivo settings, and caused liver injury in rats. QLT can alleviate the lipotoxic liver injury caused by TW. LXRα agonist further activated ERS induced by TW, whereas LXRα inhibitor significantly reduced ERS and lipotoxic injury induced by TW in HepaRG cells. CONCLUSIONS: TW upregulated LXRα to activate ERS and increased the gene expression of SREBP-1c and lipid-synthesizing enzymes, leading to increased lipid synthesis in hepatocytes to result in liver injury. QLT inhibited the LXRα-ERS-SREBP-1c pathway and reduced abnormal lipid synthesis in hepatocytes and the hepatotoxicity of TW.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Hepatócitos/efeitos dos fármacos , Tripterygium/toxicidade , Animais , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Receptores X do Fígado/genética , Ratos , Ratos Sprague-Dawley , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
15.
Drug Des Devel Ther ; 15: 1915-1930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33976541

RESUMO

BACKGROUND: S. baicalensis, a traditional herb, has great potential in treating diseases associated with aberrant lipid metabolism, such as inflammation, hyperlipidemia, atherosclerosis and Alzheimer's disease. AIM OF THE STUDY: To elucidate the mechanism by which S. baicalensis modulates lipid metabolism and explore the medicinal effects of S. baicalensis at a holistic level. MATERIALS AND METHODS: The potential active ingredients of S. baicalensis and targets involved in regulating lipid metabolism were identified using a network pharmacology approach. Metabolomics was utilized to compare lipids that were altered after S. baicalensis treatment in order to identify significantly altered metabolites, and crucial targets and compounds were validated by molecular docking. RESULTS: Steroid biosynthesis, sphingolipid metabolism, the PPAR signaling pathway and glycerolipid metabolism were enriched and predicted to be potential pathways upon which S. baicalensis acts. Further metabolomics assays revealed 14 significantly different metabolites were identified as lipid metabolism-associated elements. After the pathway enrichment analysis of the metabolites, cholesterol metabolism and sphingolipid metabolism were identified as the most relevant pathways. Based on the results of the pathway analysis, sphingolipid and cholesterol biosynthesis and glycerophospholipid metabolism were regarded as key pathways in which S. baicalensis is involved to regulate lipid metabolism. CONCLUSION: According to our metabolomics results, S. baicalensis may exert its therapeutic effects by regulating the cholesterol biosynthesis and sphingolipid metabolism pathways. Upon further analysis of the altered metabolites in certain pathways, agents downstream of squalene were significantly upregulated; however, the substrate of SQLE was surprisingly increased. By combining evidence from molecular docking, we speculated that baicalin, a major ingredient of S. baicalensis, may suppress cholesterol biosynthesis by inhibiting SQLE and LSS, which are important enzymes in the cholesterol biosynthesis pathway. In summary, this study provides new insights into the therapeutic effects of S. baicalensis on lipid metabolism using network pharmacology and lipidomics.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipidômica , Medicamentos de Ervas Chinesas/metabolismo , Humanos , Medicina Tradicional Chinesa , Metabolômica
16.
Front Pharmacol ; 12: 619288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746756

RESUMO

Depressive disorder is a common mental disorder characterized by depressed mood and loss of interest or pleasure. As the Herbal medicines are mainly used as complementary and alternative therapy for depression. This study aimed at exploring antidepressant activity of Huang-lian Jie-du Decoction (HLJDD), and evaluating active components and potential depression-associated targets. HLJDD was administered on chronic unpredictable mild stress-induced (CUMS) depressive mice. Behavior evaluation was performed through force swimming test (FST), novelty-suppressed feeding test (NSF), and open field test (OFT). Active components of HLJDD, potential targets, and metabolic pathways involved in depression were explored through systemic biology-based network pharmacology assay, molecular docking and metabonomics. FST assay showed that CUMS mice administered with HLJDD had significantly shorter immobility time compared with control mice. Further, HLJDD alleviated feeding latency of CUMS mice in NSFand increased moving distance and duration in OFT. In the following network pharmacology assay, thirty-eight active compounds in HLJDD were identified based on drug-like characteristics, and pharmacokinetics and pharmacodynamics profiles. Moreover, forty-eight molecular targets and ten biochemical pathways were uncovered through molecular docking and metabonomics. GRIN2B, DRD, PRKCA, HTR, MAOA, SLC6A4, GRIN2A, and CACNA1A are implicated in inhibition of depressive symptoms through modulating tryptophan metabolism, serotonergic and dopaminergic synaptic activities, cAMP signaling pathway, and calcium signaling pathway. Further network pharmacology-based analysis showed a correlation between HLJDD and tryptophan metabolism. A total of thirty-seven active compounds, seventy-six targets, and sixteen biochemical pathways were involved in tryptophan metabolism. These findings show that HLJDD acts on potential targets such as SLC6A4, HTR, INS, MAO, CAT, and FoxO, PI3K/Akt, calcium, HIF-1, and mTOR signaling pathways, and modulates serotoninergic and dopaminergic synaptic functions. In addition, metabonomics showed that tryptophan metabolism is the primary target for HLJDD in CUMS mice. The findings of the study show that HLJDD exhibited antidepressant effects. SLC6A4 and MAOA in tryptophan metabolism were modulated by berberine, baicalein, tetrahydroberberine, candicine and may be the main antidepressant targets for HLJDD.

17.
ACS Omega ; 6(4): 3307-3318, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553948

RESUMO

Silybin is a flavonoid lignin compound consisting of two diastereomers with nearly equal molar ratios. It has been reported that silybin can effectively inhibit the aggregation of amyloid protein, but the difference between the two silybin diastereomers has been rarely studied. In this work, the inhibitory ability of silybin to hen egg-white lysozyme (HEWL) was demonstrated, and the difference of kinetic parameters of two diastereomers was analyzed. Fluorescence quenching titration was utilized to analyze the binding differences to native HEWL between the diastereomers, and transmission electron microscopy (TEM) was utilized to analyze the characteristics of the surface of various samples. The differences between hydrophobicity and the secondary structure among several HEWL samples were measured by the 8-anilino-1-naphthalene sulfonic (ANS) acid fluorescence probe, Raman spectra, and far-UV circular dichroism. Moreover, the differences in the binding energy of these two diastereomers with HEWL were analyzed by molecular docking. Also, we have investigated the effect of silybin diastereomers on HEWL fibril-induced cytotoxicity in SH-SY5Y cells. Results show that silybin has a certain inhibitory effect on the HEWL fibrillogenesis process, while silybin B (SB) has a more significant inhibitory effect than silybin A (SA), especially at high concentrations. This work provides some insights into the screening of amyloid inhibitors from complicated natural products and indicates that SB has the prospect of further development as an amyloid inhibitor.

18.
Zhongguo Zhong Yao Za Zhi ; 45(1): 106-112, 2020 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-32237418

RESUMO

To explore the permeation mechanism of micro-molecule medicinal ingredients of water extract of tradition Chinese medicine(TCM) in membrane separation process. With phenolic acid components as the model solute, five phenolic acids with similar molecular weight and structure, namely gallic acid, protocatechuate acid, 4-hydroxybenzoic acid, 3-hydroxybenzoic acid and salicylic acid, were selected in the PES membrane separation experiments. With the relative flux and the transmission rate as indexes, the scanning electron microscopy(SEM) and the electrochemical impedance spectroscopy(EIS) were used to analyze the permeation mechanism of different phenolic acid components. The results showed phenolic acids with similar molecular weight had different permeation behaviors, with decreased relative flux and increased solute permeation with the increase of solute concentration. According to the permeation behavior analyzed by the molecular structure of solute, the transmission rate of phenolic acids increased with the increase of the number of hydroxyl, and the order of substituent positions of phenolic acids based on the permeation rate as follows: para-substituted > meta-substitution > ortho-substitution. Electrochemical impedance spectroscopy reflected the role of charge repulsion in the membrane process; that is to say, the greater the resistance is, the less the solute permeation is. Therefore, the permeation phenomenon of the phenolic acid components in the PES membrane is not only the result of simple sieving mechanisms, but also has the effects of steric hindrance and charge repulsion during the membrane process.


Assuntos
Medicamentos de Ervas Chinesas/análise , Hidroxibenzoatos/isolamento & purificação , Membranas Artificiais , Medicina Tradicional Chinesa , Estrutura Molecular , Peso Molecular
19.
Mol Pharm ; 17(5): 1596-1607, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32142292

RESUMO

Pulmonary fibrosis (PF) is a kind of interstitial lung disease with the features of progressive and often fatal dyspnea. Tetrandrine (TET) is the major active constituent of Chinese herbal Stephania tetrandra S. Moore, which has already applied clinically to treat rheumatism, lung cancer, and silicosis. In this work, a tetrandrine-hydroxypropyl-ß-cyclodextrin inclusion compound (TET-HP-ß-CD) was developed for the treatment of pulmonary fibrosis via inhalation administration. TET-HP-ß-CD was prepared by the freeze-drying method and identified using the cascade impactor, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectrum (FT-IR). A bleomycin-induced pulmonary fibrosis rat model was used to assess the effects of inhaled TET and TET-HP-ß-CD. Animal survival, hydroxyproline content in the lungs, and lung histology were detected. The results showed that inhalation of TET-HP-ß-CD alleviated inflammation and fibrosis, limited the accumulation of hydroxyproline in the lungs, regulated protein expression in PF development, and improved postoperative survival. Moreover, nebulized delivery of TET-HP-ß-CD accumulated chiefly in the lungs and limited systemic distribution compared with intravenous administration. The present results indicated that inhalation of TET-HP-ß-CD is an attractive candidate for the treatment of pulmonary fibrosis.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Benzilisoquinolinas/química , Fibrose Pulmonar/tratamento farmacológico , 2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , 2-Hidroxipropil-beta-Ciclodextrina/farmacocinética , Administração por Inalação , Animais , Benzilisoquinolinas/administração & dosagem , Benzilisoquinolinas/farmacocinética , Modelos Animais de Doenças , Pulmão/metabolismo , Pulmão/patologia , Masculino , Fibrose Pulmonar/mortalidade , Fibrose Pulmonar/patologia , Ratos , Ratos Sprague-Dawley , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Fator de Necrose Tumoral alfa/análise
20.
Langmuir ; 36(8): 2136-2142, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32027142

RESUMO

Biomineralization is characterized by the fact that the crystallization of inorganic minerals is guided by an in vivo biological interface. However, the interfaces that direct calcification are widely debated up to date. In this paper, it was found that the two-dimensional (2D) immiscible domain of cholesterol in the lipid bilayer can induce the deposition of calcium phosphate by rapidly promoting the nucleation of the hydroxyapatite (001) plane. This promotion effect is related to the high lattice matching degree between the 2D cholesterol immiscible domain and the (001) plane of hydroxyapatite (HAP), which leads to the heteroepitaxy of HAP. The lipid bilayer derived from cells or vesicles is the largest biological interface in the body, thus revealing whether the lipid bilayer can induce the deposition of calcium phosphate will facilitate the understanding of the important role of cells or vesicles in calcification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...