Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(50): eadj2170, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100586

RESUMO

Moderately siderophile (e.g., Ni) and highly siderophile elements (HSEs) in the bulk silicate Earth (BSE) are believed to be partly or near-completely delivered by late accretion after the depletion caused by metallic core formation. However, the extent and rate of remixing of late-accreted materials that equilibrated with Earth's pre-late-veneer mantle have long been debated. Observing evidence of this siderophile element-depleted pre-late-veneer mantle would provide powerful confirmation of this model of early mantle evolution. We find that the mantle source of the ~3.8-billion-year-old (Ga) Narssaq ultramafic cumulates from Southwest Greenland exhibits a subtle 60Ni/58Ni excess of ~0.05 per mil and contains a clear HSE deficiency of ~60% relative to the BSE. The intermediate Ni isotopic composition and HSE abundances of the ~3.8-Ga Narssaq mantle mark a transitional Eoarchean snapshot as the poorly mixed 3.8-Ga mantle containing elements of pre-late-veneer mantle material transitions to modern Earth's mantle.

2.
Anal Chem ; 95(4): 2253-2259, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36638820

RESUMO

Double spike (DS) method has been extensively used in determining stable isotope ratios of many elements. However, challenges remain in obtaining high-precision isotope data for ultra-trace elements owing to the limitations of instrumental signal-to-noise ratios and the systematics of precision of DS-based measurements. Here, the DS-standard addition (SA) (DSSA) technique is proposed to improve measurements of isotope compositions of ultra-trace elements in natural samples. According to the U-shaped relationship between DS measurement uncertainty and the spike/sample ratio, theoretical equations and an error propagation model (EPM) were constructed comprehensively. In our method, a spiked secondary standard solution with a high, precisely known spike/sample ratio is mixed with samples such that the mixtures have spike/sample ratios within the optimal range. The abundances of the samples relative to the added standards (sample fraction; fspl) and the samples' isotope ratios can then be obtained exactly using a standard DS data reduction routine and the isotope binary mixing model. The accuracy and precision of the DSSA approach were verified by measurements of cadmium and molybdenum isotopes at as low as 5 ng levels. Compared with traditional DS measurements, the sample size for isotope analysis is reduced to 1/6-1/5 of the original with no loss of measurement precision. The optimal mixing range fspl = 0.15-0.5 is recommended. The DSSA method can be extended to isotope measurement of more than 33 elements where the DS method is applicable, especially for the ultra-trace elements such as platinum group and rare earth element isotopes.

3.
Environ Pollut ; 319: 121026, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36621714

RESUMO

The local topography and leaching conditions significantly affect the spatial distribution of selenium (Se) in the local environment. However, the driving factors controlling Se distribution have not been well addressed. In this paper, taking Yutangba, a village known for human selenosis in China, as an example, we demonstrate how topographic factors influence the spatial distribution of Se in soils and plants. In the scenarios of slope ≤25°, the correlations among slope and soil/extractable/plant Se are significantly negative (P < 0.05), whereas they become weak or unclear when the slope is > 25°, suggesting that 25° of slope is a critical transition boundary. Similar observations were further verified by the soil erosion modulus (SEM) and the surface runoff intensity index (SRI), indicating that Se transport via soil erosion is limited and accounts for 11.2-17% of the soil Se, while surface runoff plays a dominant role in the Se distribution, accounting for 83-88.1%. Soil extractable Se is negatively correlated with SRI (Pearson r = -0.87 at slope < 25°), showing that the migration capacity of Se is higher at steep terrain and controlled by topography through soil erosion and surface runoff. The positive relationship between plant Se and soil/extractable Se demonstrates that topography indirectly influences plant Se through soil Se bioavailability. Abnormally local Se enrichment observed at the elevated steep hillside (>25°) in northwestern Yutangba primarily was resulted from the weathering of Se-rich rocks. These observations confirm that the topographic slope gradient influences the transport and spatial distribution of soil Se, implying that topography should be considered when studying the spatial distribution of soil Se at a regional scale, especially for the Se-poor belt in China.


Assuntos
Selênio , Poluentes do Solo , Humanos , Selênio/análise , Solo , Poluentes do Solo/análise , Plantas , China
4.
Sci Total Environ ; 852: 158447, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36075435

RESUMO

The concentration and speciation of endogenous cadmium (Cd) in soil systems derived from parent materials is continuously altered by rock-soil-plant interactions. Previous studies on the distribution of Cd primarily focused on surface soil at regional scale. However, it lacks a novel approach to provide a new perspective on dynamics and redistribution of Cd in soil profile. Therefore, this study tries to establish the linkage between isotope fractionation and environmental processes of Cd in soil profiles with geogenic Cd enrichment based on Cd isotopes. High Cd concentrations were observed in the profile from forest at accumulation zone and the one from farmland at ridge in a rural area, southwest China. Soil erosion and deposition substantially influence the vertical distribution of total Cd in soil from the accumulation zone. Accordingly, distinct Cd isotope compositions were observed in different layers (δ114/110Cd: -0.087 ‰ to -0.066 ‰ vs -0.325 ‰ to -0.056 ‰). Mineral transformation, pedogenesis and biological activities controlled the dynamics and redistribution of Cd. The mobility of Cd increased during weathering processes, with ~40 % to 60 % of Cd residing in exchangeable fraction in the surface layers. Biological activity is a vital factor that drives Cd isotope fractionation in soil, resulting in depletion of heavy Cd isotopes in surface layers of the studied farmland profile. Contrasting fractionation effects were observed in profiles from forest and farmland due to the variance in soil-plant Cd cycling. Our study revealed the processes that control dynamics and redistribution of endogenous Cd in soil profiles, and proved that Cd isotope is a useful tool to investigate the bio-geochemical processes of Cd in soil systems.


Assuntos
Poluentes do Solo , Solo , Solo/química , Cádmio/análise , Isótopos , Poluentes do Solo/análise , Fracionamento Químico
5.
J Hazard Mater ; 436: 129048, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35526343

RESUMO

Sequential flooding and draining substantially alter Cd mobilization in paddy fields, primarily due to redox-driven changes in Fe-Mn (hydro)oxides and Cd-sulfides. However, the impacts of carbonates on Cd mobilization during flooding-drainage alternations remain poorly understood. In this study, Cd isotope compositions were analyzed in soils and plants at three growth stages, and the results show a pH-dependent Cd mobilization and isotope fractionation. Sequential extraction shows the Cd mainly binds to the exchangeable fraction and carbonates, and their amounts vary with pH. Exchangeable Cd with light isotopes coprecipitates into carbonates due to increased pH during flooding (tillering and panicle initiation). Whereas in drained soils (maturity), the carbonate-bound Cd releases with decreased pH. Light isotopes are enriched in rice compared with exchangeable Cd, but this enrichment is insignificant at maturity. This difference is mainly caused by the change in Cd isotope composition of exchangeable Cd pool due to carbonate coprecipitation during flooding. Limited isotope fractionation between roots and aboveground tissues is found at tillering, whereas significant isotope fractionation is observed at two other stages, suggesting the nodes might work during Cd translocation between tissues. These findings demonstrate alternating flooding-drainage impacts the mobilization of carbonate-bound Cd and, consequently, isotope fractionation in soil-rice systems.


Assuntos
Oryza , Poluentes do Solo , Cádmio/metabolismo , Isótopos/metabolismo , Oryza/metabolismo , Solo/química , Poluentes do Solo/metabolismo
6.
Water Res ; 220: 118619, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623144

RESUMO

Cd-rich wastes from open-pit mining can be transported into rivers, which are often followed by deposition in river sediments and/or further transfer into agricultural soils. The lithology of bedrock exerts a huge effect on physicochemical properties (e.g., buffering capacities, metal species, mineral phases, etc.) of the river system, thereby potentially impacting the Cd mobility in watersheds. However, to date, little is known about the microscopic processes (e.g., dissolution, adsorption, and precipitation) controlling the migration of Cd from mines to varied watersheds. This study, therefore, aims to determine the controlling factors on Cd mobilization in two mining-impacted watersheds with contrasting bedrock lithology using both Cd and Pb isotopes. The Pb isotope ratios of sediments and soils in both watersheds fall into a binary mixing model with two isotopically distinct sources, i.e., mining wastes and bedrock. These results indicate that mining activities are the main sources of Cd in sediments and soils. However, the Cd isotope ratios reveal different Cd migration processes between the two watersheds. In the siliceous watershed, the δ114/110Cd values of sediments decrease from -0.116‰ in the upper reach to -0.712‰ in the lower reach, with a concomitant increase in Cd concentration, which may result from Cd adsorption by goethite due to the increased pH. In contrast, in the calcareous watershed, the Cd isotope compositions of sediments (-0.345 to -0.276‰) and the pH of river water are nearly invariable, suggesting that the adsorption and release of Cd in sediments are limited. This may result from the strong pH buffering effect due to the presence of carbonate rocks. This study highlights the different fates of Cd in siliceous and calcareous watersheds and suggests that the development of Cd pollution control policies must consider regional lithology.


Assuntos
Cádmio , Poluentes Químicos da Água , Cádmio/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Isótopos/análise , Chumbo , Rios/química , Solo/química , Poluentes Químicos da Água/análise
7.
Clin Lab ; 68(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35443590

RESUMO

BACKGROUND: The aim was to investigate the distribution of antibiotic resistance determinants and virulence factors in a group of carbapenem non-susceptible Pseudomonas aeruginosa (P. aeruginosa). METHODS: From March 2018 to May 2019, a total of 98 P. aeruginosa samples were collected from 6 hospitals in Ningbo and Hangzhou, Zhejiang Province, China. Drug susceptibility tests to 13 antimicrobial agents were conducted. The presence of antibiotic resistance determinants and virulence factors were investigated by PCR, including 39 ß-lactamase genes, 14 aminoglycoside modifying enzyme genes, 10 16SrRNA methylase genes, and 11 virulence genes. Phylogenetics of 98 P. aeruginosa was analyzed by sample cluster analysis (UPGMA). RESULTS: PCR revealed the presence of 7 ß-lactamase genes, 5 aminoglycoside modifying enzymes, 1 16S rRNA methylase gene, and 8 virulence genes in total, at least 2 ß-lactamase genes and 4 virulence genes were positive in every isolate. In addition, regional differences in distributions of resistance and virulence genes remained between 2 cities. Sample cluster analysis showed that the strains had obvious aggregation and were divided into several clusters, strains in the same cluster were isolated from different hospitals, even from different cities. CONCLUSIONS: Carrying resistance genes blaPDC and blaOXA-50 group and virulence genes plcH, aprA, and algD were the important epidemiological characteristics of this group of P. aeruginosa. The present findings provide insights into the mechanisms of hypervirulence as well as resistance to ß-lactams and aminoglycosides. To the best of our knowledge, this is the first report of blaPDC, blaOXA-50, and aph(3')-XV in P. aeruginosa in China.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/epidemiologia , Pseudomonas aeruginosa/genética , RNA Ribossômico 16S , Fatores de Virulência/genética , beta-Lactamases/genética
8.
Ecotoxicol Environ Saf ; 236: 113509, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35421828

RESUMO

Clay minerals are important soil components and usually coexist with organic matter, forming mineral-organic associations (MOAs), which control the speciation, mobility, and bioavailability of heavy metals. However, the adsorption mechanism of cadmium (Cd) by MOAs is still unclear, especially for the associations of amphotericorganic matter and clay minerals. In this study, 12-aminododecanoic acid (ALA) and montmorillonite (Mt) were chosen to prepare MOAs via intercalation (Mt-ALA composite) and physical mixing (Mt-ALA mixture). Batch experiments were conducted to investigate the adsorption mechanism of Cd(II) by MOAs under different pH values and initial Cd(II) concentrations. The results showed that the Cd(II) adsorption capacities followed as Mt > Mt-ALA mixture > Mt-ALA composite under acidic conditions, Mt-ALA mixture > Mt > Mt-ALA composite under neutral conditions, and Mt-ALA mixture > Mt-ALA composite > Mt under alkaline conditions, suggesting the adsorption behaviors of Cd(II) by MOAs were primarily constrained by the speciation of ALA and solution pH. Under acidic conditions, cationic HALA+ could intercalate into the interlayer of Mt and occupy the adsorption sites, reducing the adsorption capacity of Cd(II). As pH increased to neutral, HALA+ decreased and changed to a zwitterionic state, which caused ALA to release out from the interlayer of Mt-ALA composite or not easily enter into Mt-ALA mixture and promoted Cd(II) adsorption. Under alkaline conditions, the increase of anion ALA- would cause ALA to be mainly adsorbed on the surface of Mt and chelate with Cd(II), enhancing the adsorption of Cd(II). Further analysis by Fourier transform infrared and X-ray photoelectron spectroscopy indicated that the carboxyl and amino groups of ALA both participated in the adsorption of Cd(II). These findings could extend the knowledge on the mobility and fate of Cd in clay-based soils and be used as a basis for understanding the biogeochemical behavior of Cd in the environment.


Assuntos
Cádmio , Poluentes do Solo , Adsorção , Bentonita/química , Argila , Concentração de Íons de Hidrogênio , Minerais , Solo/química , Poluentes do Solo/química
9.
J Hazard Mater ; 421: 126780, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34358974

RESUMO

The microbial colonization profiles on microplastics (MPs) in marine environments have recently sparked global interest. However, many studies have characterized plastisphere microbiomes without considering the ecological processes that underly microbiome assembly. Here, we carried out a three-timepoint exposure experiment at 1-, 4-, and 8-week and investigated the colonization dynamics for polyethylene, polypropylene, polystyrene, polyvinyl chloride, and acrylonitrile-butadiene-styrene MP pellets in natural coastal water. Using high-throughput sequencing of 16S rRNA, we found diversity and evenness were higher (p < 0.05) in the plastisphere communities than those in seawater, and microorganisms colonizing were co-influenced by environmental factors, polymer types, and exposure duration. Functional potential and co-occurrence network analysis revealed that MP exposure enriched the xenobiotic biodegradation potential and reduced the complexity of the MP microbial network. Simultaneously, null-model analyses indicated that stochastic processes contributed a bigger role than deterministic processes in shaping plastisphere microbial community structure with dispersal limitations contributing to a greater extent to microbial succession trajectories. These results implied the plastic surface had a more important role as a raft onto which microbes attach rather than selectively recruiting plastic-specific microbial colonizers. Our work strengthened the understanding of the ecological mechanisms by which microbial community patterns are controlled during colonization by plastic-associated microbes.


Assuntos
Microbiota , Plásticos , Biodegradação Ambiental , RNA Ribossômico 16S/genética , Água do Mar
10.
Sci Total Environ ; 783: 147126, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34088147

RESUMO

Black shale contains abundant pyrite and organic matter that are susceptible to weathering when exposed to the air. In the process of weathering, acid mine drainage can be produced, and a range of toxic trace elements including Cr can be released and transported into rivers, groundwater and soils, potentially leading to severe environmental pollution. In order to study Cr migration and Cr isotopic fractionation during black shale weathering, we sampled metalliferous black shales and cherts from two weathering profiles at Shadi and Yutangba from the Permian Maokou Formation in Enshi Prefecture. The unweathered samples in Shadi and Yutangba have high Cr contents (1562 µg/g and 643 µg/g, respectively), and highly fractionated Cr isotopic compositions (2.04 ± 0.11‰ and 1.91 ± 0.09‰, respectively, expressed as δ53Cr). The narrow range of authigenic δ53Cr in these unweathered shales suggests that the δ53Cr value of the seawater was relatively stable during the period of deposition. Strongly weathered shales in Shadi and Yutangba both display significant Cr losses compared to the unweathered counterparts. Their average δ53Cr values are 1.75 ± 0.12‰ and 1.85 ± 0.39‰ for Shadi and Yutangba, respectively, which are isotopically lighter than fresh samples. This indicates that heavier Cr isotopes are preferentially leached into fluids, leaving the residues enriched in lighter isotopes during black shale weathering. However, the δ53Cr values of the samples close to the water table are higher than those of the unaltered ones, which can be explained by adsorption or quantitative reduction of Cr(VI) near the water table. The fact that Cr isotopes are fractionated during black shale weathering may complicate the application of δ53Cr in polluted samples to identify the Cr sources in areas with exposed black shales. The δ53Cr of seepage water can be measured and treated as a more realistic source signal.

11.
Sci Total Environ ; 771: 145437, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33736182

RESUMO

Bacterial degradation is one of the most efficient ways to remove microcystins (MCs), the most frequently detected toxin in cyanobacterial blooms. Using Novosphingobium sp. ERW19 as a representative strain, our laboratory previously demonstrated that quorum sensing (QS), the cell density-dependent gene regulation system, positively regulates biodegradation of MCs via transcriptional activation of mlr-pathway-associated genes. Increasing evidence indicates that QS is involved in a wide spectrum of regulatory circuits, but it remains unclear which physiological processes in MC degradation besides the expression of MC-degrading genes are also subject to QS-dependent regulation. This study used transcriptome analysis to identify QS-regulated genes during degradation of MCs. A large percentage (up to 32.6%) of the genome of the MC-degrading bacterial strain Novosphingobium sp. ERW19 was significantly differentially expressed in the corresponding QS mutants. Pathway enrichment analysis of QS-regulated genes revealed that QS mainly influenced metabolism-associated pathways, particularly those related to amino acid metabolism, carbohydrate metabolism, and biodegradation and metabolism of xenobiotics. In-depth functional interpretation of QS-regulated genes indicated a variety of pathways were potentially associated with bacterial degradation or physiological responses to MCs, including genes involved in cell motility, cytochrome P450-dependent metabolism of xenobiotics, glutathione S-transferase (GST), envelope stress response, and ribosomes. Furthermore, QS may be involved in regulating the initial and final steps of the catabolic pathway of phenylacetic acid, an intermediate product of MC degradation. Collectively, this global survey of QS-regulated genes in a MC-degrading bacterial strain facilitates a deeper understanding of QS-controlled processes that may be important for bacterial degradation of MCs or may contribute to the physiological responses of bacteria to MCs.


Assuntos
Percepção de Quorum , Sphingomonadaceae , Biodegradação Ambiental , Perfilação da Expressão Gênica , Microcistinas , Sphingomonadaceae/genética
12.
Nat Commun ; 12(1): 955, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574253

RESUMO

Geological evidence indicates that the deglaciation of Marinoan snowball Earth ice age (~635 Myr ago) was associated with intense continental weathering, recovery of primary productivity, transient marine euxinia, and potentially extensive CH4 emission. It is proposed that the deglacial CH4 emissions may have provided positive feedbacks for ice melting and global warming. However, the origin of CH4 remains unclear. Here we report Ni isotopes (δ60Ni) and Yttrium-rare earth element (YREE) compositions of syndepositional pyrites from the upper most Nantuo Formation (equivalent deposits of the Marinoan glaciation), South China. The Nantuo pyrite displays anti-correlations between Ni concentration and δ60Ni, and between Ni concentration and Sm/Yb ratio, suggesting mixing between Ni in seawater and Ni from methanogens. Our study indicates active methanogenesis during the termination of Marinoan snowball Earth. This suggests that methanogenesis was fueled by methyl sulfides produced in sulfidic seawater during the deglacial recovery of marine primary productivity.

13.
Bull Environ Contam Toxicol ; 106(1): 40-43, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33452893

RESUMO

In this study, we investigated the distribution and chemical speciation of Se in Se-rich soil by using micro-focused X-ray absorption near-edge structure (µ-XANES) spectroscopy coupling with X-ray fluorescence (µ-XRF) mapping. The microscale distribution showed that Se is heterogeneously distributed in the soil from seleniferous areas in Enshi, China. Se K-edge µ-XANES analysis suggested that Se is mainly present as Se(IV), organic Se(-II) or Se(0) species in Se-rich agricultural soil. The findings from this study would help improve the understanding of the fate, mobility, bioavailability, and biogeochemical cycling of Se in the seleniferous soil environment.


Assuntos
Selênio , Poluentes do Solo , China , Selênio/análise , Solo , Poluentes do Solo/análise , Espectroscopia por Absorção de Raios X
14.
Nat Commun ; 12(1): 294, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436633

RESUMO

Earth's habitability is closely tied to its late-stage accretion, during which impactors delivered the majority of life-essential volatiles. However, the nature of these final building blocks remains poorly constrained. Nickel (Ni) can be a useful tracer in characterizing this accretion as most Ni in the bulk silicate Earth (BSE) comes from the late-stage impactors. Here, we apply Ni stable isotope analysis to a large number of meteorites and terrestrial rocks, and find that the BSE has a lighter Ni isotopic composition compared to chondrites. Using first-principles calculations based on density functional theory, we show that core-mantle differentiation cannot produce the observed light Ni isotopic composition of the BSE. Rather, the sub-chondritic Ni isotopic signature was established during Earth's late-stage accretion, probably through the Moon-forming giant impact. We propose that a highly reduced sulfide-rich, Mercury-like body, whose mantle is characterized by light Ni isotopic composition, collided with and merged into the proto-Earth during the Moon-forming giant impact, producing the sub-chondritic Ni isotopic signature of the BSE, while delivering sulfur and probably other volatiles to the Earth.

15.
Sci Total Environ ; 759: 143499, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33203567

RESUMO

Viruses are the major drivers shaping microorganismal communities, and impact marine biogeochemical cycling. They are affected by various environmental parameters, such as salinity. Although the spatiotemporal distribution and dynamics of virioplankton have been extensively studied in saline environments, few detailed studies of community structure and function of viruses along salinity gradients have been conducted. Here, we used the 16S and 18S rRNA gene amplicon and metagenomic sequencing from a subtropical estuary (Pearl River Estuary, PRE; located in Shenzhen, Guangdong Province, China) to explore how viral community composition and function vary along a salinity gradient. Results showed that the detected viruses were mainly bacteriophages. The double-stranded DNA viruses were the most abundant (especially Siphoviridae, Myoviridae, Mimiviridae, Phycodnaviridae, and Podoviridae), followed by a small number of single-stranded DNA (Circoviridae) and RNA (Retroviridae) viruses. Viral biodiversity significantly declined and community structure varied greatly along the salinity gradient. The salinity, ammonium and dissolved oxygen were dominated factors influencing the community composition of viruses. Association network analysis showed that viruses had a negative effect on multiple host taxa (prokaryotic and eukaryotic species). Metagenomic data revealed that the main viral functional potential was involved in organic matter metabolism by carbohydrate-active enzymes (CAZymes). Deeper comparative functional analyses showed that viruses in the low-salinity environment had more carbohydrate-binding module and glycosidase hydrolases activities than those under high-salinity conditions. However, an opposite pattern was observed for carbohydrate esterases. These results suggest that virus-encoded CAZyme genes may alter the bacterial metabolism in estuaries. Overall, our results demonstrate that there is a spatial heterogeneity in the composition and function of virioplankton along a salinity gradient. This study enhances our understanding of viral distribution and their contribution to regulating carbon degradation throughout environments with varying salinities in subtropical estuaries.


Assuntos
Estuários , Salinidade , Biodiversidade , China , Rios
16.
Water Res ; 183: 116020, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32653764

RESUMO

Elucidating the interactions between algae and associated microbial communities is critical for understanding the mechanisms that mediate the dynamic of harmful algal blooms (HABs) in marine environment. However, the microbial functional profiles and their biogeochemical potential in HABs process remains elusive, especially during a complete natural HAB cycle. Here, we used pyrosequencing and functional gene array (GeoChip) to investigate microbial community dynamics and metabolic potential during a natural dinoflagellate (Noctiluca scintillans) bloom. The results shown that bacterioplankton exhibited significant temporal heterogeneity over the course of the bloom stages. Microbial succession was co-driven by environmental parameters and biotic interactions. The functional analysis revealed significant variations in microbial metabolism during matter cycling. At bloom onset-stage, metabolic potential associated with iron oxidation and transport was elevated. Carbon fixation and degradation, denitrification, phosphorus acquisition, and sulfur transfer/oxidation were significantly enhanced at the plateau stage. During the decline and terminal stages, oxidative stress, lysis of compounds, and toxin degradation & protease synthesis increased. This work reveal phycosphere microorganisms can enhanced organic C decomposition capacity, altered N assimilation rate and S/P turnover efficiency, and balancing of the Fe budget during HAB process. The ecological linkage analysis has further shown that microbial composition and functional potential were significantly linked to algal blooms occurrence. It suggest that structural variability and functional plasticity of microbial communities influence HAB trajectory.


Assuntos
Dinoflagellida , Microbiota , Organismos Aquáticos , Proliferação Nociva de Algas , Fósforo
17.
Water Res ; 183: 116092, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32622230

RESUMO

Microcystins (MCs) are the most common cyanotoxins produced by harmful cyanobacterial blooms and pose an increasing global threat to human health and ecosystems. Microbial degradation represents an efficient and sustainable approach for the removal of MCs. Although the enzymatic pathway for biodegradation of MCs has been characterized, the regulatory mechanisms underlying the degradation processes remain unclear. Quorum sensing (QS) is a cell-density-dependent regulatory mechanism that enables bacteria to orchestrate collective behaviors. The acyl-homoserine lactone (AHL)-mediated QS system regulates the biodegradation of many organic pollutants. However, it is not known whether this QS system is involved in the degradation of MCs. This study aimed to fill this knowledge gap. In this study, the proportion of culturable AHL-producers increased significantly after enrichment of MCs, and AHL-based QS systems were present in all genome-sequenced MC-degrading strains, supporting the hypothesis that QS participates in the degradation of MCs. Two bifunctional Novosphingobium strains (with MC-degrading and AHL-producing abilities) were isolated using a novel primer pair targeting mlrA, the marker gene of mlr degradation pathway. Biochemical and genetic analysis revealed that the MC-degrading bacterium Novosphingobium sp. ERW19 encodes two hierarchical regulatory QS systems designated novR1/novI1 and novR2/novI2. Gene knockout and complementation experiments indicated that both systems were required for efficient degradation of MCs. Transcriptomic analyses revealed that the QS systems positively regulate degradation of MCs through transcriptional activation of MC-degrading genes, especially mlrA. Given that QS may be a common trait within mlr pathway-dependent MC-degrading bacterial strains and the degradation activity is directly regulated by QS, manipulation of the QS systems may be a promising strategy to control biodegradation of MCs.


Assuntos
Acil-Butirolactonas , Percepção de Quorum , Proteínas de Bactérias , Ecossistema , Microcistinas , Transativadores
18.
Environ Microbiol ; 22(5): 1944-1962, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32249540

RESUMO

Coral associated microorganisms, especially some opportunistic pathogens can utilize quorum-sensing (QS) signals to affect population structure and host health. However, direct evidence about the link between coral bleaching and dysbiotic microbiomes under QS regulation was lacking. Here, using 11 opportunistic bacteria and their QS products (AHLs, acyl-homoserine-lactones), we exposed Pocillopora damicornis to three different treatments: test groups (A and B: mixture of AHLs-producing bacteria and cocktail of AHLs signals respectively); control groups (C and D: group A and B with furanone added respectively); and a blank control (group E: only seawater) for 21 days. The results showed that remarkable bleaching phenomenon was observed in groups A and B. The operational taxonomic units-sequencing analysis shown that the bacterial network interactions and communities composition were significantly changed, becoming especially enhanced in the relative abundances of Vibrio, Edwardsiella, Enterobacter, Pseudomonas, and Aeromonas. Interestingly, the control groups (C and D) were found to have a limited influence upon host microbial composition and reduced bleaching susceptibility of P. damicornis. These results indicate bleaching's initiation and progression may be caused by opportunistic bacteria of resident microbes in a process under regulation by AHLs. These findings add a new dimension to our understanding of the complexity of bleaching mechanisms from a chemoecological perspective.


Assuntos
Antozoários/microbiologia , Bactérias/metabolismo , Disbiose/fisiopatologia , Microbiota/fisiologia , Percepção de Quorum/fisiologia , Acil-Butirolactonas , Aeromonas/metabolismo , Animais , Mudança Climática , Recifes de Corais , Edwardsiella/metabolismo , Pseudomonas/metabolismo , Água do Mar/microbiologia , Transdução de Sinais/fisiologia , Simbiose/fisiologia , Vibrio/metabolismo
19.
Water Res ; 173: 115554, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32028248

RESUMO

Harmful algal blooms (HABs) are an ecological concern but relatively few studies have investigated the functional potential of bacterioplankton over a complete algal bloom cycle, which is critical for determining their contribution to the fate of algal blooms. To address this point, we carried out a time-series metagenomic analysis of the functional features of microbial communities at three different Gymnodinium catenatum bloom stages (pre-, peak-, and post-bloom). Different microbial composition were observed during the blooming stages. The environmental parameters and correlation networks co-contribute to microbial variability, and the former explained 38.4% of total variations of the bacterioplankton community composition. Functionally, a range of pathways involved in carbon, nitrogen, phosphorus and sulfur cycling were significantly different during the various HAB stages. Genes associated with carbohydrate-active enzymes, denitrification, and iron oxidation were enriched at the pre-bloom stage; genes involved in reductive citrate cycle for carbon fixation, carbon degradation, nitrification and phosphate transport were enhanced at the peak stage; and relative gene abundance related to sulfur oxidation, vitamin synthesis, and iron transport and storage was increased at the post-bloom stage. The ecological linkage analysis has shown that microbial functional potential especially the C/P/Fe metabolism were significantly linked to the fate of the algal blooms. Taken together, our results demonstrated that microorganisms displayed successional patterns not only at the community level, but also in the metabolic potential on HAB's progression. This work contributes to a growing understanding of microbial structural elasticity and functional plasticity and shed light on the potential mechanisms of microbial-mediated HAB trajectory.


Assuntos
Dinoflagellida , Microbiota , Proliferação Nociva de Algas , Nitrogênio , Fósforo
20.
Biotechnol Rep (Amst) ; 25: e00421, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31956522

RESUMO

We describe the isolation of Bacillus subtilis strain JA and demonstrate that this bacterium exhibited strong algicidal effects on the algae Alexandrium minutum with an inhibition rate exceeding 80 % within 48 h. B. subtilis JA significantly reduced the photosynthetic efficiency of A. minutum and caused extensive morphological damage to the algae. Genomic analysis of B. subtilis JA demonstrated that a putative AI-2 type quorum sensing (QS) gene (LuxS) is present in its genome cluster, which is regulate pheromone biosynthesis. Interestingly, the exogenous addition of a QS-oligopeptide (ComX-pheromone) improved the algicidal efficiency of B. subtilis JA, thus indicating that the algicidal activity of this bacterium is potentially regulated by QS. Collectively, our data describe a potential antialgal bacterium and speculated that its behavior can be modulated by QS signal. B. subtilis JA may therefore represent a valuable tool for the development of novel chemical-ecological methods with which to control harmful algae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...