Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 27(35): 9102-9111, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33871880

RESUMO

Efficient multifunctional materials acting as violet-blue emitters, as well as host materials for phosphorescent OLEDs, are crucial but rare due to demand that they should have high first singlet state (S1 ) energy and first triplet state (T1 ) energy simultaneously. In this study, two new violet-blue bipolar fluorophores, TPA-PI-SBF and SBF-PI-SBF, were designed and synthesized by introducing the hole transporting moiety triphenylamine (TPA) and spirobifluorene (SBF) unit that has high T1 into high deep blue emission quantum yield group phenanthroimidazole (PI). As the results, the non-doped OLEDs based on TPA-PI-SBF exhibited excellent EL performance with a maximum external quantum efficiency (EQEmax ) of 6.76 % and a violet-blue emission with Commission Internationale de L'Eclairage (CIE) of (0.152, 0.059). The device based on SBF-PI-SBF displayed EQEmax of 6.19 % with CIE of (0.159, 0.049), which nearly matches the CIE coordinates of the violet-blue emitters standard of (0.131, 0.046). These EL performances are comparable to the best reported non-doped deep or violet-blue emissive OLEDs with CIEy<0.06 in recent years. Additionally, the green, yellow and red phosphorescent OLEDs with TPA-PI-SBF and SBF-PI-SBF as host materials achieved a high EQEmax of about 20 % and low efficiency roll-off at the ultra-high luminance of 10 000 cd m-2 . These results provided a new construction strategy for designing high-performance violet-blue emitters, as well as efficient host materials for phosphorescent OLEDs.

2.
Chemistry ; 26(39): 8588-8596, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32187750

RESUMO

Two novel bipolar deep-blue fluorescent emitters, IP-PPI and IP-DPPI, featuring different lengths of the phenyl bridge, were designed and synthesized, in which imidazo[1,2-a]pyridine (IP) and phenanthroimidazole (PI) were proposed as an electron acceptor and an electron donor, respectively. Both of them exhibit outstanding thermal stability and high emission quantum yields. All the devices based on these two materials showed negligible efficiency roll-off with increasing current density. Impressively, non-doped organic light-emitting diodes (OLEDs) based on IP-PPI and IP-DPPI exhibited external quantum efficiencies (EQEs) of 4.85 % and 4.74 % with CIE coordinates of (0.153, 0.097) and (0.154, 0.114) at 10000 cd m-2 , respectively. In addition, the 40 wt % IP-PPI doped device maintained a high EQE of 5.23 % with CIE coordinates of (0.154, 0.077) at 10000 cd m-2 . The doped device based on 20 wt % IP-DPPI exhibited a higher deep-blue electroluminescence (EL) performance with a maximum EQE of up to 6.13 % at CIE of (0.153, 0.078) and maintained an EQE of 5.07 % at 10000 cd m-2 . To the best of our knowledge, these performances are among the state-of-the art devices with CIEy ≤0.08 at a high brightness of 10000 cd m-2 . Furthermore, by doping a red phosphorescent dye Ir(MDQ)2 (MDQ=2-methyldibenzo[f,h]quinoxaline) into the IP-PPI and IP-DPPI hosts, high-performance red phosphorescent OLEDs with EQEs of 20.8 % and 19.1 % were achieved, respectively. This work may provide a new approach for designing highly efficient deep-blue emitters with negligible roll-off for OLED applications.

3.
Biosens Bioelectron ; 94: 507-512, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28343103

RESUMO

In this study, a green and fast method was developed to synthesize high-yield carbon dots (CDs) via one-pot microwave treatment of banana peels without using any other surface passivation agents. Then the as-prepared CDs was used as the reducing agent and stabilizer to synthesize a Pd-Au@CDs nanocomposite by a simple sequential reduction strategy. Finally, Pd-Au@CDs nanocomposite modified glassy carbon electrode (Pd-Au@CDs/GCE) was obtained as a biosensor for target DNA after being immobilized a single-stranded probe DNA by a carboxyl ammonia condensation reaction. Under the optimal conditions, the sensor could detect target DNA concentrations in the range from 5.0×10-16 to 1.0×10-1°molL-1. The detection limit (LD) was estimated to be 1.82×10-17molL-1, which showed higher sensitivity than other electrochemical biosensors reported. In addition, the DNA sensor was also successfully applied to detect colitoxin DNA in human serum.


Assuntos
Técnicas Biossensoriais , Carbono/química , DNA/isolamento & purificação , Nanocompostos/química , Amônia/química , DNA/química , Técnicas Eletroquímicas , Ouro/química , Humanos , Limite de Detecção , Óxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...