Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893565

RESUMO

L-theanine, a unique non-protein amino acid, is an important bioactive component of green tea. Previous studies have shown that L-theanine has many potent health benefits, such as anti-anxiety effects, regulation of the immune response, relaxing neural tension, and reducing oxidative damage. However, little is known concerning whether L-theanine can improve the clearance of mitochondrial DNA (mtDNA) damage in organisms. Here, we reported that L-theanine treatment increased ATP production and improved mitochondrial morphology to extend the lifespan of UVC-exposed nematodes. Mechanistic investigations showed that L-theanine treatment enhanced the removal of mtDNA damage and extended lifespan by activating autophagy, mitophagy, mitochondrial dynamics, and mitochondrial unfolded protein response (UPRmt) in UVC-exposed nematodes. In addition, L-theanine treatment also upregulated the expression of genes related to mitochondrial energy metabolism in UVC-exposed nematodes. Our study provides a theoretical basis for the possibility that tea drinking may prevent mitochondrial-related diseases.


Assuntos
Caenorhabditis elegans , Glutamatos , Longevidade , Mitocôndrias , Raios Ultravioleta , Animais , Caenorhabditis elegans/efeitos dos fármacos , Glutamatos/farmacologia , Raios Ultravioleta/efeitos adversos , Longevidade/efeitos dos fármacos , Longevidade/efeitos da radiação , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , DNA Mitocondrial/metabolismo , Autofagia/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos da radiação , Trifosfato de Adenosina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética
2.
Pest Manag Sci ; 80(8): 3839-3851, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38511614

RESUMO

BACKGROUND: As a type of biological control agent (BCA), Bacillus velezensis possesses the efficacy of inhibiting pathogenic microorganisms, promoting plant growth, and overcoming continuous cropping obstacles (CCOs). However, there is limited reporting on the optimization of the cultivation conditions for such biocontrol agents and their role as double-stranded RNA (dsRNA) delivery vectors. RESULTS: In this study, a Bacillus velezensis strain HS-3 was isolated from the root zone of tomato plants with in vitro anti-Botrytis cinerea activity. The investigation into active compounds revealed that HS-3 predominantly employs proteins with molecular weights greater than 3 kDa for its antifungal activity. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis identified various proteases and chitosanase, further suggesting that HS-3 most likely employs these enzymes to degrade fungal cell walls for its antifungal effect. To optimize the production of extracellular proteins, fermentation parameters for HS-3 were systematically optimized, leading to an optimized medium (OP-M). HS-3 cultured in OP-M demonstrated enhanced capacity to assist tomato plants in withstanding CCOs. However, the presence of excessive nematodes in diseased soil resulted in the disease severity index (DSI) remaining high. An RNA interference mechanism was further introduced to HS-3, targeting the nematode tyrosine phosphatase (TP) gene. Ultimately, HS-3 expressing dsRNA of TP in OP-M effectively assisted tomatoes in mitigating CCOs, reducing DSI to 2.2% and 17.8% of the control after 45 and 90 days of growth, respectively. CONCLUSION: The advantages of Bacillus velezensis in crop disease management and the mitigation of CCOs become even more pronounced when utilizing both optimized levels of endogenous enzymes and introduced nematode-targeting dsRNA. © 2024 Society of Chemical Industry.


Assuntos
Bacillus , Resistência à Doença , Doenças das Plantas , RNA de Cadeia Dupla , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Bacillus/fisiologia , Bacillus/genética , Bacillus/metabolismo , RNA de Cadeia Dupla/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Animais , Botrytis , Controle Biológico de Vetores , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Agentes de Controle Biológico/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/metabolismo
3.
Micromachines (Basel) ; 14(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37630112

RESUMO

Associative learning is a critical survival trait that promotes behavioral plasticity in response to changing environments. Chemosensation and mechanosensation are important sensory modalities that enable animals to gather information about their internal state and external environment. However, there is a limited amount of research on these two modalities. In this paper, a novel PDMS-agar hybrid microfluidic device is proposed for training and analyzing chemical-mechanical associative learning behavior in the nematode Caenorhabditis elegans. The microfluidic device consisted of a bottom agar gel layer and an upper PDMS layer. A chemical concentration gradient was generated on the agar gel layer, and the PDMS layer served to mimic mechanical stimuli. Based on this platform, C. elegans can perform chemical-mechanical associative learning behavior after training. Our findings indicated that the aversive component of training is the primary driver of the observed associative learning behavior. In addition, the results indicated that the neurotransmitter octopamine is involved in regulating this associative learning behavior via the SER-6 receptor. Thus, the microfluidic device provides a highly efficient platform for studying the associative learning behavior of C. elegans, and it may be applied in mutant screening and drug testing.

4.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37420760

RESUMO

Since light propagation in water bodies is subject to absorption and scattering effects, underwater images using only conventional intensity cameras will suffer from low brightness, blurred images, and loss of details. In this paper, a deep fusion network is applied to underwater polarization images; that is, the underwater polarization images are fused with intensity images using the deep learning method. To construct a training dataset, we establish an experimental setup to obtain underwater polarization images and perform appropriate transformations to expand the dataset. Next, an end-to-end learning framework based on unsupervised learning and guided by an attention mechanism is constructed for fusing polarization and light intensity images. The loss function and weight parameters are elaborated. The produced dataset is used to train the network under different loss weight parameters, and the fused images are evaluated based on different image evaluation metrics. The results show that the fused underwater images are more detailed. Compared with light intensity images, the information entropy and standard deviation of the proposed method increase by 24.48% and 139%. The image processing results are better than other fusion-based methods. In addition, the improved U-net network structure is used to extract features for image segmentation. The results show that the target segmentation based on the proposed method is feasible under turbid water. The proposed method does not require manual adjustment of weight parameters, has faster operation speed, and has strong robustness and self-adaptability, which is important for research in vision fields, such as ocean detection and underwater target recognition.


Assuntos
Algoritmos , Aprendizado de Máquina não Supervisionado , Benchmarking , Entropia , Água
5.
Anal Chem ; 92(17): 12062-12070, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32786485

RESUMO

Cell signaling greatly affected by complicated and temporally dynamic extracellular microenvironments controls most of the physiological functions in vivo. To reconstruct or simulate such microenvironments in vitro represents a fundamental approach for revealing the underlying mechanisms of those sophisticated processes. Recent advances in microfluidics have added a new dimension to cell signaling analysis, for example, concentration gradient generators (amplitude aspect) or hydrodynamic gating strategy (frequency aspect), but it is still challengeable to capture single-cell dynamic signaling in response to a mimicked extracellular microenvironment with varied stimuli waveforms of different amplitude and frequency in a high-throughput manner. In this article, we proposed a novel microfluidic strategy coupling multichannel synchronous hydrodynamic gating with microfluidic concentration gradient generators (µMHG-CGG) to probe dynamic signaling of single cells with high throughput. The µMHG-CGG allows rapid delivery of dynamic chemical signals in both high frequency (as high as 670 mHz) and multiple amplitude domains at the same time and simultaneously high-throughput probing cell dynamics at single-cell resolution in real time. By applying the proposed system, the mechanisms for encoding/decoding systems (termed "frequency coding" or "amplitude coding") via GPCRs-mediated signaling pathways responding to histamine (HA) and adenosine triphosphate (ATP) in single HeLa cells were investigated. The optimal drug concentrations of single cells responses to HA and ATP individually or in combination were also successfully discussed, allowing us to obtain both single-cell heterogeneity and statistics from the cell population.


Assuntos
Hidrodinâmica , Transdução de Sinais/fisiologia , Análise de Célula Única/métodos , Humanos
6.
Talanta ; 208: 120484, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816727

RESUMO

Gas embolism is the abnormal emergence of bubble in the vascular system, which can induce local ischemic symptoms. For studying the mechanism underlying gas embolism and revealing local ischemic diseases information, novel technique for analyzing cells response to bubble contact with high controllability is highly desired. In this paper, we present an integrated microfluidic device for the precise generation and control of microbubble based on the gas permeability of polydimethysiloxane (PDMS) to study the effect of bubble's mechanical contact on cells. Cell viability analysis demonstrated that short-term (<15 min) bubble contact was generally non-lethal to cultured endothelial cells. The significant increase in intracellular calcium of the microbubble-contacted cells and cell-to-cell propagation of calcium signal in the adjacent cells were observed during the process of bubble expansion. In addition, the analysis of intercellular calcium signal in the cells treated with suramin and octanol revealed that cell-released small nucleotides and gap junction played an important role in regulating the propagation of calcium wave triggered by bubble contact. Thus, our microfluidic method provides an effective platform for studying the effect of gas embolism on cultured adherent cells and can be further needed for anti-embolism drugs test.


Assuntos
Embolia Aérea , Dispositivos Lab-On-A-Chip , Cálcio/metabolismo , Sobrevivência Celular , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos
7.
Talanta ; 192: 431-438, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30348414

RESUMO

To investigate rapid suspension cell signaling, a microfluidic platform was urgently needed for flexibly manipulation of single cells and simultaneous generation of controllable chemical signals to stimulate single cells. In this paper, a microfluidic biosensor was developed to monitor intracellular calcium signal, integrated with single-cell trapping, chemical stimulation and releasing. Selective entrapment and discharge of individual cell were achieved by controlling the deformable membrane with pneumatic traps. The activation of intracellular calcium signal was qualitatively and quantitatively investigated by high-controllable chemical single-cell stimulation based on flexible hydrodynamic gating. And performing chemical stimulation and control assay in the same channel would improve the experimental robustness and effectiveness. Further investigation of the cellular responses to ATP pulses of varying concentrations and durations indicated that 20 µM ATP pulses with duration as short as 200 ms resulted in the same level of Ca2+ response induced by sustained stimulations. Washing with buffer for 30 s was sufficient for single cell to recover from receptor desensitization caused by ATP stimulation. In addition, the responses of cells to ATP stimulation were heterogeneous. The developed microfluidic method opens up a new avenue for intracellular signaling studies and drug screening.


Assuntos
Técnicas Biossensoriais/instrumentação , Cálcio/análise , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Trifosfato de Adenosina/metabolismo , Animais , Técnicas Biossensoriais/métodos , Dimetilpolisiloxanos/química , Fluoresceína/química , Fluorescência , Células HeLa , Humanos , Hidrodinâmica , Camundongos , Técnicas Analíticas Microfluídicas/métodos , Microscopia de Fluorescência , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...