Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 344: 140348, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37793551

RESUMO

It has been previously reported that pre-magnetization could enhance the efficacy of zero-valent iron (ZVI) in removing contaminants. However, little is known about the effects and persistence of different magnetization methods on pre-magnetized ZVI (Pre-ZVI) when used in advanced oxidation processes (AOPs). Gaining a comprehensive understanding of the durability of various pre-magnetization methods in enhancing the removal efficiency of different pollutants will significantly impact the widespread utilization of Pre-ZVI in practical engineering. Herein, we investigated the efficiency of dry and wet Pre-ZVI-activated peroxymonosulfate (PMS) in eliminating oxytetracycline (OTC) and evaluated the durability of Pre-ZVI. Additionally, we examined several factors that influence the degradation process's efficiency. Our results found that the reaction constant k values corresponding to the dry Pre-ZVI/PMS system at the pH values of 3, 7, and 9 varied from approximately 0.0384, 0.0331, and 0.0349 (day 1) to roughly 0.0297, 0.0278, and 0.0314 (day 30), respectively. Meanwhile, the wet Pre-ZVI/PMS system exhibited k values ranging from approximately 0.0392, 0.0349, and 0.0374 (day 1) to roughly 0.0380, 0.0291, and 0.0322 (day 30), respectively. Moreover, we proposed four OTC degradation pathways using LC-MS/MS and density functional theory calculations. The toxicity of the degradation products was assessed using the ecological structure activity relationship and the toxicity estimation software tool. Overall, this study provides insights into the application of Pre-ZVI/PMS that can be selectively used to eliminate tetracycline antibiotics from water.


Assuntos
Oxitetraciclina , Poluentes Químicos da Água , Ferro/química , Cromatografia Líquida , Poluentes Químicos da Água/química , Espectrometria de Massas em Tandem
2.
Chin Med J (Engl) ; 126(8): 1451-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23595376

RESUMO

BACKGROUND: Elevated intraocular pressure (IOP) is primarily due to increased aqueous outflow resistance, but how aqueous outflow resistance is generated and regulated are still not fully understood. The aim of this study is to determine whether changes in outflow facility, outflow pattern, and morphology following acute IOP elevation were reversible when the IOP was returned to a normal level in bovine eyes using a two-color tracer technique to label outflow patterns within the same eye. METHODS: Twelve fresh enucleated bovine eyes were perfused with Dulbecco's phosphate buffer saline (PBS) containing 5.5 mmol/L glucose (DBG) at 30 mmHg first to establish the baseline outflow facility followed by a fixed volume of red fluorescent microspheres (0.5 µm, 0.002% v/v). After the red tracer being replaced with DBG in the anterior chamber, perfusion was continued at 7 mmHg with the same volume of green tracer, followed by a fixative. In two control groups, the eyes were constantly perfused at either 30 mmHg (n = 6) or 7 mmHg (n = 6) using the same methods. The outflow facility (C, µl × min × (-1)mmHg(-1)), was continuously recorded. Confocal images were taken along the inner wall (IW) of the aqueous plexus (AP) in frontal sections. The percent of the effective filtration length (PEFL, PEFL = IW length exhibiting tracer labeling/total length of IW) was measured. Sections with AP were processed and examined by light microscopy. The total length of IW and the length exhibiting separation (SL) in the juxtacanalicular connective tissue (JCT) were measured. A minimum of eight collector channel (CC) ostia per eye were analyzed for herniations. RESULTS: In the experimental (30 - 7 mmHg) group, the outflow facility was significantly higher at 7 mmHg ((4.81 - 1.33) µl × min × (-1)mmHg(-1)) than that at 30 mmHg ((0.99 ± 0.15) µl × min × (-1)mmHg(-1), P = 0.002), corresponding to a significant increase in the PEFL (P = 0.0003). The percent of CC ostia exhibiting herniations in the experimental group ((67.40 ± 8.90) µl × min × (-1)mmHg(-1)) decreased significantly compared to that in the control at 30 mmHg ((94.44 ± 3.33) µl × min × (-1)mmHg(-1), P = 0.03), but higher than that in the control at 7 mmHg ((29.43 ± 4.60) µl × min × (-1)mmHg(-1), P = 0.01). Washout-associated separation between the IW and JCT was found by light microscopy and percent separation length (PSL, PSL = SL/total length of IW) was decreased in the control at 30 mmHg compared to that in the experimental group and control at 7 mmHg. CONCLUSIONS: The pressure-induced morphological and hydrodynamic changes were reversible. Changes (collapse of AP, separation between the JCT and IW, and herniation into CC ostia) influence the effective filtration area that regulates outflow facility.


Assuntos
Humor Aquoso/fisiologia , Pressão Intraocular/fisiologia , Animais , Bovinos , Hidrodinâmica , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...