Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 16(6): 1044-1051, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33269749

RESUMO

Apelin-13 is a novel endogenous ligand for an angiotensin-like orphan G-protein coupled receptor, and it may be neuroprotective against cerebral ischemia injury. However, the precise mechanisms of the effects of apelin-13 remain to be elucidated. To investigate the effects of apelin-13 on apoptosis and autophagy in models of cerebral ischemia/reperfusion injury, a rat model was established by middle cerebral artery occlusion. Apelin-13 (50 µg/kg) was injected into the right ventricle as a treatment. In addition, an SH-SY5Y cell model was established by oxygen-glucose deprivation/reperfusion, with cells first cultured in sugar-free medium with 95% N2 and 5% CO2 for 4 hours and then cultured in a normal environment with sugar-containing medium for 5 hours. This SH-SY5Y cell model was treated with 10-7 M apelin-13 for 5 hours. Results showed that apelin-13 protected against cerebral ischemia/reperfusion injury. Apelin-13 treatment alleviated neuronal apoptosis by increasing the ratio of Bcl-2/Bax and significantly decreasing cleaved caspase-3 expression. In addition, apelin-13 significantly inhibited excessive autophagy by regulating the expression of LC3B, p62, and Beclin1. Furthermore, the expression of Bcl-2 and the phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway was markedly increased. Both LY294002 (20 µM) and rapamycin (500 nM), which are inhibitors of the PI3K/Akt/mTOR pathway, significantly attenuated the inhibition of autophagy and apoptosis caused by apelin-13. In conclusion, the findings of the present study suggest that Bcl-2 upregulation and mTOR signaling pathway activation lead to the inhibition of apoptosis and excessive autophagy. These effects are involved in apelin-13-induced neuroprotection against cerebral ischemia/reperfusion injury, both in vivo and in vitro. The study was approved by the Animal Ethical and Welfare Committee of Jining Medical University, China (approval No. 2018-JS-001) in February 2018.

2.
J Org Chem ; 82(24): 13084-13092, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29096055

RESUMO

Pyridinium aldoximes, which are best-known as therapeutic antidotes for organophosphorus chemical warfare nerve-agents and pesticides, have been found to markedly detoxify polyhalogenated quinones, which are a class of carcinogenic intermediates and recently identified disinfection byproducts in drinking water. However, the exact chemical mechanism underlying this detoxication remains unclear. Here we demonstrate that pralidoxime can remarkably facilitate the dechlorination/hydroxylation of the highly toxic tetrachloro-1,4-benzoquinone in two-consecutive steps to generate the much less toxic 2,5-dichloro-3,6-dihydroxy-1,4-benzoquonine, with rate enhancements of up to 180 000-times. On the contrary, no accelerating effect was noticed with O-methylated pralidoxime. The major reaction product from pralidoxime was identified as its corresponding nitrile (2-cyano-1-methylpyridinium chloride). Along with oxygen-18 isotope-labeling studies, a reaction mechanism was proposed in which nucleophilic substitution coupled with an unprecedented double Beckmann fragmentation reaction was responsible for the dramatic enhancement in the detoxification process. This represents the first report of an unusually mild and facile Beckmann-type fragmentation that can occur under normal physiological conditions in two-consecutive steps. The study may have broad biomedical and environmental significance for future investigations of aldoxime therapeutic agents and carcinogenic polyhalogenated quinones.


Assuntos
Desintoxicação Metabólica Fase I , Compostos de Pralidoxima/química , Estrutura Molecular
3.
Proc Natl Acad Sci U S A ; 109(40): 16046-51, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22988069

RESUMO

Most chemiluminescence (CL) reactions usually generate only one-step CL, which is rarely dependent on the highly reactive and biologically/environmentally important hydroxyl radicals ((•)OH). Here, we show that an unprecedented two-step CL can be produced by the carcinogenic tetrachloro-1,4-benzoquinone (also known as p-chloranil) and H(2)O(2), which was found to be well-correlated to and directly dependent on its two-step metal-independent production of (•)OH. We proposed that (•)OH-dependent formation of quinone-dioxetane and electronically excited carbonyl species might be responsible for this unusual two-step CL production by tetrachloro-1,4-benzoquinone/H(2)O(2). This is a unique report of a previously undefined two-step CL-producing system that is dependent on intrinsically formed (•)OH. These findings may have potential applications in detecting and quantifying (•)OH and the ubiquitous polyhalogenated aromatic carcinogens, which may have broad biological and environmental implications for future research on these types of important species.


Assuntos
Carcinógenos/química , Cloranila/química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Luminescência , Modelos Químicos , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Fluorescência , Cromatografia Gasosa-Espectrometria de Massas , Estrutura Molecular
4.
Chem Res Toxicol ; 24(1): 30-4, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21047085

RESUMO

Ergothioneine (2-mercaptohistidine trimethylbetaine) is a naturally occurring amino acid analogue found in up to millimolar concentrations in several tissues and biological fluids. However, the biological functions of ergothioneine remain incompletely understood. In this study, we investigated the role of ergothioneine in copper-induced oxidative damage to DNA and protein, using two copper-containing systems: Cu(II) with ascorbate and Cu(II) with H(2)O(2) [0.1 mM Cu(II), 1 mM ascorbate, and 1 mM H(2)O(2)]. Oxidative damage to DNA and bovine serum albumin was measured as strand breakage and protein carbonyl formation, respectively. Ergothioneine (0.1-1.0 mM) provided strong, dose-dependent protection against oxidation of DNA and protein in both copper-containing systems. In contrast, only limited protection was observed with the purported hydroxyl radical scavengers, dimethyl sulfoxide and mannitol, even at concentrations as high as 100 mM. Ergothioneine also significantly inhibited copper-catalyzed oxidation of ascorbate and competed effectively with histidine and 1,10-phenanthroline for binding of cuprous copper, but not cupric copper, as demonstrated by UV-visible and low-temperature electron spin resonance techniques. We conclude that ergothioneine is a potent, natural sulfur-containing antioxidant that prevents copper-dependent oxidative damage to biological macromolecules by forming a redox-inactive ergothioneine-copper complex.


Assuntos
Complexos de Coordenação/química , Cobre/toxicidade , Dano ao DNA , Ergotioneína/química , Animais , Ácido Ascórbico/química , Bovinos , Complexos de Coordenação/toxicidade , Cobre/química , DNA/metabolismo , Dimetil Sulfóxido/química , Espectroscopia de Ressonância de Spin Eletrônica , Ergotioneína/farmacologia , Sequestradores de Radicais Livres/química , Histidina/química , Peróxido de Hidrogênio/química , Manitol/química , Oxirredução , Fenantrolinas/química , Carbonilação Proteica , Soroalbumina Bovina/química
5.
Proc Natl Acad Sci U S A ; 107(48): 20686-90, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21076034

RESUMO

Hydroxamic acids, which are best-known for their metal-chelating properties in biomedical research, have been found to effectively detoxify the carcinogenic polyhalogenated quinoid metabolites of pentachlorophenol and other persistent organic pollutants. However, the chemical mechanism underlying such detoxication is unclear. Here we show that benzohydroxamic acid (BHA) could dramatically accelerate the conversion of the highly toxic tetrachloro-1, 4-benzoquinone (p-chloranil) to the much less toxic 2,5-dichloro-3, 6-dihydroxy-1, 4-benzoquonine (chloranilic acid), with rate accelerations of up to 150,000-fold. In contrast, no enhancing effect was observed with O-methyl BHA. The major reaction product of BHA was isolated and identified as O-phenylcarbamyl benzohydroxamate. On the basis of these data and oxygen-18 isotope-labeling studies, we proposed that suicidal nucleophilic attack coupled with an unexpected double Lossen rearrangement reaction was responsible for this remarkable acceleration of the detoxication reaction. This is the first report of an unusually mild and facile Lossen-type rearrangement, which could take place under normal physiological conditions in two consecutive steps. Our findings may have broad biological and environmental implications for future research on hydroxamic acids and polyhalogenated quinoid carcinogens, which are two important classes of compounds of major biomedical and environmental interest.


Assuntos
Carcinógenos/toxicidade , Hidrocarbonetos Halogenados/toxicidade , Ácidos Hidroxâmicos/química , Modelos Químicos , Quinonas/toxicidade , Ânions , Benzoquinonas/metabolismo , Carcinógenos/química , Meio Ambiente , Hidrocarbonetos Halogenados/química , Hidrólise/efeitos dos fármacos , Espectrometria de Massas , Quinonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...