Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 728
Filtrar
1.
Biomater Sci ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873991

RESUMO

PROteolysis TArgeting Chimeras have received increasing attention due to their capability to induce potent degradation of various disease-related proteins. However, the effective and controlled cytosolic delivery of current small-molecule PROTACs remains a challenge, primarily due to their intrinsic shortcomings, including unfavorable solubility, poor cell permeability, and limited spatiotemporal precision. Here, we develop a near-infrared light-controlled PROTAC delivery device (abbreviated as USDPR) that allows the efficient photoactivation of PROTAC function to achieve enhanced protein degradation. The nanodevice is constructed by encapsulating the commercial BRD4-targeting PROTACs (dBET6) in the hollow cavity of mesoporous silica-coated upconversion nanoparticles, followed by coating a Rose Bengal (RB) photosensitizer conjugated poly-L-lysine (PLL-RB). This composition enables NIR light-activatable generation of cytotoxic reactive oxygen species due to the energy transfer from the UCNPs to PLL-RB, which boosts the endo/lysosomal escape and subsequent cytosolic release of dBET6. We demonstrate that USDPR is capable of effectively degrading BRD4 in a NIR light-controlled manner. This in combination with NIR light-triggered photodynamic therapy enables an enhanced antitumor effect both in vitro and in vivo. This work thus presents a versatile strategy for controlled release of PROTACs and codelivery with photosensitizers using an NIR-responsive nanodevice, providing important insight into the design of effective PROTAC-based combination therapy.

2.
Aquat Toxicol ; 273: 107006, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38909583

RESUMO

Nanoplastics (NPs) and microcystin-LR (MC-LR) are two common and harmful pollutants in water environments, especially at aquafarm where are full of plastic products and algae. It is of great significance to study the toxic effects and mechanisms of the NPs and/or MC-LR on fish at the early stage. In this study, the embryo and larvae of a filtering-feeding fish, Aristichthys nobilis, were used as the research objects. The results showed that the survival and hatching rates of the embryo were not significantly affected by the environmental concentration exposure of these two pollutants. Scanning electron microscopy (SEM) observation displayed that NPs adhered to the surface of the embryo membrane. Transcriptomic and bioinformatic analyses revealed that the NPs exposure activated neuromuscular junction development and skeletal muscle fiber in larvae, and affected C5-Branched dibasic acid metabolism. The metabolic and biosynthetic processes of zeaxanthin, xanthophyll, tetraterpenoid, and carotenoid were suppressed after the MC-LR exposure, which was harmful to the retinol metabolism of fish. Excessive production of superoxide dismutase (SOD) was detected under the MC-LR exposure. The MC-LR and NPs coexposure triggered primary immunodeficiency and adaptive immune response, leading to the possibility of reduced fitness of A.nobilis during the development. Collectively, our results indicate that environmental concentration NPs and MC-LR coexposure could cause toxic damage and enhance sick risk in A.nobilis, providing new insights into the risk of NPs and MC-LR on filtering-feeding fish.

3.
Small Methods ; : e2400697, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824667

RESUMO

Small molecule-based photothermal agents (PTAs) hold promising future for photothermal therapy; however, unexpected inactivation exerts negative impacts on their application clinically. Herein, a self-regenerating PTA strategy is proposed by integrating 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS•+) with a thermodynamic agent (TDA) 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH). Under NIR laser, the photothermal effect of ABTS•+ accelerates the production of alkyl radicals by AIPH, which activates the regeneration of ABTS•+, thus creating a continuous positive feedback loop between photothermal and thermodynamic effects. The combination of ABTS•+ regeneration and alkyl radical production leads to the tandem photothermal and thermodynamic tumor therapy. In vitro and in vivo experiments confirm that the synergistic action of thermal ablation, radical damage, and oxidative stress effectively realizes tumor suppression. This work offers a promising approach to address the unwanted inactivation of PTAs and provides valuable insights for optimizing combination therapy.

4.
Dalton Trans ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888145

RESUMO

Electrochemical reduction of carbon dioxide (CO2) or carbon monoxide (CO) to valuable multi-carbon (C2+) products like acetate is a promising approach for a sustainable energy economy. However, it is still challenging to achieve high activity and selectivity for acetate production, especially in neutral electrolytes. Herein, a bioinspired hemin/Cu hybrid catalyst was developed to enhance the surface *CO coverage for highly efficient electroreduction of CO to acetate fuels. The hemin/Cu electrocatalyst exhibits a remarkable faradaic efficiency of 45.2% for CO-to-acetate electroreduction and a high acetate partial current density of 152.3 mA cm-2. Furthermore, the developed hybrid catalyst can operate stably at 200 mA cm-2 for 14.6 hours, producing concentrated acetate aqueous solutions (0.235 M, 2.1 wt%). The results of in situ Raman spectroscopy and theoretical calculations proved that the Fe-N4 structure of hemin could enhance the CO adsorption and enrich the local concentration of CO, thereby improving C-C coupling for acetate production. In addition, compared to the unmodified Cu catalysts, the Cu catalysts functionalized with cobalt phthalocyanine with a Co-N4 structure also exhibit improved acetate performance, proving the universality of this bioinspired molecule-enhanced strategy. This work paves a new way to designing bioinspired electrolysis systems for producing specific C2+ products from CO2 or CO electroreduction.

5.
Anal Chem ; 96(21): 8754-8762, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38740024

RESUMO

Simultaneous profiling of redox-regulated markers at different cellular sublocations is of great significance for unraveling the upstream and downstream molecular mechanisms of oxidative stress in living cells. Herein, by synchronizing dual target-triggered DNA machineries in one nanoentity, we engineered a DNA walker-driven mass nanotag (MNT) assembly system (w-MNT-AS) that can be sequentially activated by oxidative stress-associated mucin 1 (MUC1) and apurinic/apyrimidinic endonuclease 1 (APE1) from plasma membrane to cytoplasm and induce recycled assembly of MNTs for multiplex detection of the two markers by matrix-assisted laser desorption ionization mass spectrometry (MALDI MS). In the working cascade, the sensing process governs the separate activation of w-MNT-AS by MUC1 and APE1 in diverse locations, while the assembly process contributes to the parallel amplification of the ion signal of the characteristic mass tags. In this manner, the differences between MCF-7, HeLa, HepG2, and L02 cells in membrane MUC1 expression and cytoplasmic APE1 activation were fully characterized. Furthermore, the oxidative stress level and dynamics caused by exogenous H2O2, doxorubicin, and simvastatin were comprehensively demonstrated by tracking the fate of the two markers across different cellular locations. The proposed w-MNT-AS coupled MS method provides an effective route to probe multiple functional molecules that lie at different locations while participating in the same cellular event, facilitating the mechanistic studies on cellular response to oxidative stress and other disease-related cellular processes.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA , Mucina-1 , Estresse Oxidativo , Humanos , Mucina-1/metabolismo , DNA/metabolismo , DNA/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Peróxido de Hidrogênio/metabolismo
6.
ACS Nano ; 18(22): 14546-14557, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38776420

RESUMO

Hydrogen production by photosynthetic hybrid systems (PBSs) offers a promising avenue for renewable energy. However, the light-harvesting efficiency of PBSs remains constrained due to unclear intracellular kinetic factors. Here, we present an operando elucidation of the sluggish light-harvesting behavior for existing PBSs and strategies to circumvent them. By quantifying the spectral shift in the structural color scattering of individual PBSs during the photosynthetic process, we observe the accumulation of product hydrogen bubbles on their outer membrane. These bubbles act as a sunshade and inhibit light absorption. This phenomenon elucidates the intrinsic constraints on the light-harvesting efficiency of PBSs. The introduction of a tension eliminator into the PBSs effectively improves the bubble sunshade effect and results in a 4.5-fold increase in the light-harvesting efficiency. This work provides valuable insights into the dynamics of transmembrane transport gas products and holds the potential to inspire innovative designs for improving the light-harvesting efficiency of PBSs.

7.
Front Med (Lausanne) ; 11: 1363484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756948

RESUMO

Objective: This study aimed to evaluate the cost-effectiveness of two Chinese patent medicines, including Kang Ai injection and Shenqi Fuzheng injection with each combined with platinum-based chemotherapy as the first-line treatment for patients with advanced non-small cell lung cancer (NSCLC) in China. Methods: From Chinese healthcare system perspective, a three state Markov model with a cycle of 3 weeks and a 10-year horizon was constructed to derive the incremental cost-effectiveness ratio (ICER). Since only individual patient data of progression-free survival (PFS) of Kang Ai injection group can be obtained, we extrapolated median overall survival (mOS) of Kang Ai injection group and median progression-free survival (mPFS) and mOS of Shenqi Fuzheng injection group based on published literature and methods. Then survival curves were estimated by the method of declining exponential approximation of life expectancy (DEALE), which is based on the assumption that survival follows a declining exponential function. We performed one-way sensitivity analysis and probabilistic sensitivity analysis to test the robustness. Additionally, a scenario analysis was adopted to investigate the impact of using best-fitting distribution for PFS curve of Kang Ai injection group on the economic conclusion. Results: The base-case result indicated that Kang Ai injection group provided 0.217 incremental quality-adjusted life years (QALYs) at an incremental cost of $103.38 compared with Shenqi Fuzheng injection group. The ICER was $476.41/QALY, which was much lower than the willingness to pay threshold of one time the GDP per capita of China in 2022 ($12,070/QALY). Deterministic sensitivity analysis result showed that ICER was most sensitive to the changes in odds ratio (OR) value. The probabilistic sensitivity analysis confirmed the robustness of base-case analysis results. The scenario analysis result showed that by using Log-Normal distribution to fit the PFS curve of Kang Ai injection group and shortening the time horizon to 5 years, the ICER was $4,081.83/QALY, which was still much lower than the willingness to pay threshold. Conclusion: Kang Ai injection combined with platinum-based chemotherapy appeared to be more cost-effective for the treatment of advanced NSCLC than Shenqi Fuzheng injection combined with platinum-based chemotherapy.

8.
Environ Sci Technol ; 58(23): 10128-10139, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38743597

RESUMO

Pervaporation (PV) is an effective membrane separation process for organic dehydration, recovery, and upgrading. However, it is crucial to improve membrane materials beyond the current permeability-selectivity trade-off. In this research, we introduce machine learning (ML) models to identify high-potential polymers, greatly improving the efficiency and reducing cost compared to conventional trial-and-error approach. We utilized the largest PV data set to date and incorporated polymer fingerprints and features, including membrane structure, operating conditions, and solute properties. Dimensionality reduction, missing data treatment, seed randomness, and data leakage management were employed to ensure model robustness. The optimized LightGBM models achieved RMSE of 0.447 and 0.360 for separation factor and total flux, respectively (logarithmic scale). Screening approximately 1 million hypothetical polymers with ML models resulted in identifying polymers with a predicted permeation separation index >30 and synthetic accessibility score <3.7 for acetic acid extraction. This study demonstrates the promise of ML to accelerate tailored membrane designs.


Assuntos
Aprendizado de Máquina , Polímeros , Polímeros/química , Membranas Artificiais , Permeabilidade
9.
Environ Pollut ; 353: 124168, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761878

RESUMO

Multiple odour nuisance in livestock farming is a notorious problem that has a significant impact on the living environment of surrounding communities. Adsorbents based on metal-organic framework (MOF) materials show great promise for controlling odour pollution, as they offer a high specific surface area, a controllable structure and an abundance of active sites. However, the MOF formation process is prone to problems such as pore clogging or collapse and reduced porosity, which limits its further application. In this study, a series of odour adsorbents were prepared by in situ growth of NH2-UiO-66 on tea stem biochar (TSBC) using a hydrothermal method and named UiO (Zr)-TSBCx. The physical and chemical properties and composition of UiO (Zr)-TSBCx have been systematically characterized using SEM, TEM, XRD, FT-IR, N2 adsorption-desorption and XPS. The release of odours from the pig farm effluent was monitored using in-situ continuous Proton-Transfer-Reaction Mass Spectrometry (PTR-MS), and the obtained primary compositions were tested for further adsorption. In dynamic adsorption experiments focused on butyric acid, UiO (Zr)-TSBC2 showed a high adsorption capacity of 3.99 × 105 µg/g and exceptional structural stability. UiO (Zr)-TSBC2 showed variable adsorption efficiencies for different odorous gases, with the best performance for the removal of ammonia, toluene and butyric acid. It also demonstrated the ability to rapidly mitigate instantaneous high concentrations of hydrogen sulfide (H2S), methanethiol and toluene resulting from agitation. Additionally, based on the relationship between the adsorption amount and the structural characteristics of the adsorbent as well as the nature of the odours, a possible adsorption mechanism of UiO (Zr)-TSBC2 for a variety of odours released from pig farm effluent was proposed. This work demonstrates a novel approach to promote deodorization applications in livestock and poultry farming environments by the in-situ growth of NH2-UiO-66 on biochar prepared from tea stem.


Assuntos
Carvão Vegetal , Estruturas Metalorgânicas , Odorantes , Carvão Vegetal/química , Adsorção , Estruturas Metalorgânicas/química , Odorantes/análise , Porosidade , Chá/química , Animais , Ácidos Ftálicos
10.
Bioresour Technol ; 402: 130767, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692373

RESUMO

The study assessed the effect of salinity and lead (Pb(II)) on the anammox sludge for nitrogen removal from saline wastewater. Results showed decreased nitrogen removal and specific anammox activity (SAA) with elevated salinity and Pb(II). SAA reduced from 541.3 ± 4.3 mg N g-1 VSS d-1 at 0.5 mg/L Pb(II) to 436.0 ± 0.2 mg N g-1 VSS d-1 at 30 g/L NaCl, further to 303.6 ± 7.1 mg N g-1 VSS d-1 under 30 g/L NaCl + 0.5 mg/L Pb(II). Notably, the combined inhibition at salinity (15-20 g/L NaCl) and Pb(II) (0.3-0.4 mg/L) exhibited synergistic effect, while higher salinity and Pb(II) aligned with independent inhibition models. Combined inhibition decreased protein/polysaccharides ratio, indicating more severe negative effect on anammox aggregation capacity. Metagenomics confirmed decreased Candidatus Kuenenia, and enhanced denitrification under elevated salinity and Pb(II) conditions. This study offers insights into anammox operation for treating saline wastewater with heavy metals.


Assuntos
Chumbo , Nitrogênio , Salinidade , Águas Residuárias , Águas Residuárias/química , Chumbo/metabolismo , Nitrogênio/metabolismo , Purificação da Água/métodos , Oxirredução , Esgotos/microbiologia , Anaerobiose/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Reatores Biológicos , Microbiota/efeitos dos fármacos , Desnitrificação/efeitos dos fármacos
11.
Anal Chem ; 96(21): 8837-8843, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38757510

RESUMO

Breast cancer poses the significance of early diagnosis and treatment. Here, we developed an innovative photoelectrochemical (PEC) immunosensor characterized by high-level dual photocurrent signals and exceptional sensitivity. The PEC sensor, denoted as MIL&Ag2S, was constructed by incorporating Ag2S into a metal-organic framework of MIL-101(Cr). This composite not only enhanced electron-hole separation and conductivity but also yielded robust and stable dual photocurrent signals. Through the implementation of signal switching, we achieved the combined detection of cancer antigen 15-3 (CA15-3) and carcinoembryonic antigen (CEA) with outstanding stability, reproducibility, and specificity. The results revealed a linear range for CEA detection spanning 0.01-32 ng/mL, with a remarkably low detection limit of 0.0023 ng/mL. Similarly, for CA15-3 detection, the linear range extended from 0.1 to 320 U/mL, with a low detection limit of 0.014 U/mL. The proposed strategy introduces new avenues for the development of highly efficient, cost-effective, and user-friendly PEC sensors. Furthermore, it holds promising prospects for early clinical diagnosis, contributing to potential breakthroughs in medical detection and ultimately improving patient outcomes.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Antígeno Carcinoembrionário , Técnicas Eletroquímicas , Estruturas Metalorgânicas , Mucina-1 , Compostos de Prata , Estruturas Metalorgânicas/química , Humanos , Neoplasias da Mama/diagnóstico , Antígeno Carcinoembrionário/sangue , Antígeno Carcinoembrionário/análise , Mucina-1/análise , Mucina-1/sangue , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/análise , Compostos de Prata/química , Imunoensaio/métodos , Técnicas Biossensoriais , Feminino , Limite de Detecção , Processos Fotoquímicos , Anticorpos Imobilizados/imunologia , Anticorpos Imobilizados/química
12.
J Environ Manage ; 358: 120870, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640757

RESUMO

Bacterium with high Cr(VI) detoxification capability belonged to the genus Bacillus have been largely explored, yet their reduction strategies are still in debate. Cr(VI) removal performance and mechanism of Bacillus sp. HL1 isolated from tailings a site was comprehensively investigated in this study. Approximately 88.31% of 100 mg/L Cr(VI) was continuously removed within 72 h, while it could resist up to 300 mg/L Cr(VI). Metal ions Mn2+ and Cu2+ could effectively improve the Cr(VI) removal performance to 14.41% and 3.41% under the optimal conditions, respectively. Cr(VI) removal performances by subcellular extracts showed that nearly 45.28% of 100 mg/L extracellular Cr(VI) was efficaciously reduced to Cr(III), while only 14.27%, 6.40%, and 2.73% of the cell-free extract, resting cells, and cell debris were reduced, respectively. This suggested that extracellular bioreduction was the primary Cr(VI) detoxification strategy despite a small part of Cr(VI) reduction took place intracellularly. In particular, the reduction products of the intracellular and extracellular compounds significantly differed, with organo-Cr(III) complex outside the cell and crystalline Cr(III) precipitate inside. Such observation was also evidenced by the intracellular black precipitate observed in the TEM image. XRD, XPS, and EPR analysis showed different Cr(III) compositions of intracellular and extracellular products. This study deepens our insights into the different fates of microorganisms that reduce Cr(VI) intracellularly and extracellularly.


Assuntos
Bacillus , Biodegradação Ambiental , Cromo , Bacillus/metabolismo , Cromo/metabolismo , Oxirredução
13.
Sci Total Environ ; 928: 172422, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614329

RESUMO

The oily wastewater and heavy metal ions have been increasingly discharged into water environment, posting a serious threat to ecosystems and human health. However, it remains challenging to use single separation technology to effectively remove oil and heavy metal ions in oil-water mixtures simultaneously. Herein, novel hydrophobic/hydrophilic composites (HHC) were successfully prepared by using A4 paper-derived hydrophilic cellulose as the modified matrix, modifying the polydopamine layer and in-situ growth nanoscale zero-valent iron as active adsorption materials, combined with oleic acid-modified hydrophobic magnetic hollow carbon microspheres, which were used to efficiently and rapidly adsorb heavy metals and oil in oil-water mixtures. Under the optimal adsorption conditions, the adsorption amounts of As(III), As(V), Pb(II) and Cu(II) were 289.6 mg/g, 341.9 mg/g, 241.2 mg/g and 277.5 mg/g, respectively, and the mass transfer rate of HHC to the target ions is fast. The HHC have efficient separation performance for layered oil-water mixtures and emulsified oil-water mixtures, with separation efficiency of 97 % and 92 %. At the same time, due to the abundant adsorption sites, the HHC also exhibit splendid regeneration performance for the four ions after multiple adsorption utilization. Our work designed a approach to achieving promising oil and heavy metal adsorbents with higher adsorption capacity and better regenerative properties.

14.
Chem Biodivers ; 21(6): e202400086, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38619074

RESUMO

The endoperoxide group of artemisinins is universally accepted an essential group for their anti-cancer effects. In this study, a series of D-ring-contracted artemisinin derivatives were constructed by combining ring-contracted artemisinin core with fragments of functional heterocyclic molecules or classical CDK4/6 inhibitors to identify more efficacious breast cancer treatment agents. Twenty-six novel hybridized molecules were synthesized and characterized by HRMS, IR, 1H-NMR and 13C NMR. In antiproliferative activities and kinase inhibitory effects assays, we found that the antiproliferative effects of B01 were close to those of the positive control Palbociclib, with GI50 values of 4.87±0.23 µM and 9.97±1.44 µM towards T47D cells and MDA-MB-436 cells respectively. In addition, the results showed that B01 was the most potent compound against CDK6/cyclin D3 kinase, with an IC50 value of 0.135±0.041 µM, and its activity was approximately 1/3 of the positive control Palbociclib.


Assuntos
Antineoplásicos , Artemisininas , Neoplasias da Mama , Proliferação de Células , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases , Humanos , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Artemisininas/farmacologia , Artemisininas/química , Artemisininas/síntese química , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proliferação de Células/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Estrutura Molecular , Feminino , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular
15.
J Adv Res ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599281

RESUMO

INTRODUCTION: Sepsis, a systemic immune syndrome caused by severe trauma or infection, poses a substantial threat to the health of patients worldwide. The progression of sepsis is heavily influenced by septic liver injury, which is triggered by infection and cytokine storms, and has a significant impact on the tolerance and prognosis of septic patients. The objective of our study is to elucidate the biological role and molecular mechanism of fibroblast growth factor 21 (FGF21) in the process of sepsis. OBJECTIVES: This study was undertaken in an attempt to elucidate the function and molecular mechanism of FGF21 in therapy of sepsis. METHODS: Serum concentrations of FGF21 were measured in sepsis patients and septic mice. Liver injury was compared between mice FGF21 knockout (KO) mice and wildtype (WT) mice. To assess the therapeutic potential, recombinant human FGF21 was administered to septic mice. Furthermore, the molecular mechanism of FGF21 was investigated in mice with myeloid-cell specific HIF-1α overexpression mice (LyzM-CreDIO-HIF-1α) and myeloid-cell specific Atg7 knockout mice (Atg7△mye). RESULTS: Serum level of FGF21 was significantly increased in sepsis patients and septic mice. Through the use of recombinant human FGF21 (rhFGF21) and FGF21 KO mice, we found that FGF21 mitigated septic liver injury by inhibiting the initiation and propagation of inflammation. Treatment with rhFGF21 effectively suppressed the activation of proinflammatory macrophages by promoting macroautophagy/autophagy degradation of hypoxia-inducible factor-1α (HIF-1α). Importantly, the therapeutic effect of rhFGF21 against septic liver injury was nullified in LyzM-CreDIO-HIF-1α mice and Atg7△mye mice. CONCLUSIONS: Our findings demonstrate that FGF21 considerably suppresses inflammation upon septic liver injury through the autophagy/ HIF-1α axis.

16.
JACS Au ; 4(3): 1155-1165, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38559721

RESUMO

Mechanical signals in animal tissues are complex and rapidly changed, and how the force transduction emerges from the single-cell adhesion bonds remains unclear. DNA-based molecular tension sensors (MTS), albeit successful in cellular force probing, were restricted by their detection range and temporal resolution. Here, we introduced a plasmonic tension nanosensor (PTNS) to make straight progress toward these shortcomings. Contrary to the fluorescence-based MTS that only has specific force response thresholds, PTNS enabled the continuous and reversible force measurement from 1.1 to 48 pN with millisecond temporal resolution. We used the PTNS to visualize the high dynamic range single-molecule force transitions at cell-matrix adhesions during adhesion formation and migration. Time-resolved force traces revealed that the lifetime and duration of stepwise force transitions of molecular clutches are strongly modulated by the traction force through filamentous actin. The force probing technique is sensitive, fast, and robust and constitutes a potential tool for single-molecule and single-cell biophysics.

17.
Acta Pharm Sin B ; 14(3): 1241-1256, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487006

RESUMO

Sulfation is a crucial and prevalent conjugation reaction involved in cellular processes and mammalian physiology. 3'-Phosphoadenosine 5'-phosphosulfate (PAPS) synthase 2 (PAPSS2) is the primary enzyme to generate the universal sulfonate donor PAPS. The involvement of PAPSS2-mediated sulfation in adenomatous polyposis coli (APC) mutation-promoted colonic carcinogenesis has not been reported. Here, we showed that the expression of PAPSS2 was decreased in human colon tumors along with cancer stages, and the lower expression of PAPSS2 was correlated with poor prognosis in advanced colon cancer. Gut epithelial-specific heterozygous Apc deficient and Papss2-knockout (ApcΔgut-HetPapss2Δgut) mice were created, and the phenotypes were compared to the spontaneous intestinal tumorigenesis of ApcΔgut-Het mice. ApcΔgut-HetPapss2Δgut mice were more sensitive to gut tumorigenesis, which was mechanistically accounted for by the activation of Wnt/ß-catenin signaling pathway due to the suppression of chondroitin sulfation and inhibition of the farnesoid X receptor (FXR)-transducin-like enhancer of split 3 (TLE3) gene regulatory axis. Chondroitin sulfate supplementation in ApcΔgut-HetPapss2Δgut mice alleviated intestinal tumorigenesis. In summary, we have uncovered the protective role of PAPSS2-mediated chondroitin sulfation and bile acids-FXR-TLE3 activation in the prevention of gut carcinogenesis via the antagonization of Wnt/ß-catenin signaling. Chondroitin sulfate may be explored as a therapeutic agent for Papss2 deficiency-associated colonic carcinogenesis.

18.
PLoS One ; 19(3): e0299571, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38466744

RESUMO

Phosphatases can dephosphorylate phosphorylated kinases, leading to their inactivation, and ferroptosis is a type of cell death. Therefore, our aim is to identify phosphatases associated with ferroptosis by analyzing the differentially expressed genes (DEGs) of the Luminal A Breast Cancer (LumABC) cohort from the Cancer Genome Atlas (TCGA). An analysis of 260 phosphatase genes from the GeneCard database revealed that out of the 28 DEGs with high expression, only the expression of pyruvate dehydrogenase phosphatase 2 (PDP2) had a significant correlation with patient survival. In addition, an analysis of DEGs using gene ontology, Kyoto Encyclopedia of Genes and Genomes and gene set enrichment analysis revealed a significant variation in the expression of ferroptosis-related genes. To further investigate this, we analyzed 34 ferroptosis-related genes from the TCGA-LumABC cohort. The expression of long-chain acyl-CoA synthetase 4 (ACSL4) was found to have the highest correlation with the expression of PDP2, and its expression was also inversely proportional to the survival rate of patients. Western blot experiments using the MCF-7 cell line showed that the phosphorylation level of ACSL4 was significantly lower in cells transfected with the HA-PDP2 plasmid, and ferroptosis was correspondingly reduced (p < 0.001), as indicated by data from flow cytometry detection of membrane-permeability cell death stained with 7-aminoactinomycin, lipid peroxidation, and Fe2+. Immunoprecipitation experiments further revealed that the phosphorylation level of ACSL4 was only significantly reduced in cells where PDP2 and ACSL4 co-precipitated. These findings suggest that PDP2 may act as a phosphatase to dephosphorylate and inhibit the activity of ACSL4, which had been phosphorylated and activated in LumABC cells. Further experiments are needed to confirm the molecular mechanism of PDP2 inhibiting ferroptosis.


Assuntos
Neoplasias da Mama , Ferroptose , Feminino , Humanos , Neoplasias da Mama/genética , Coenzima A Ligases/genética , Ferroptose/genética , Peroxidação de Lipídeos , Monoéster Fosfórico Hidrolases , Fosforilação , Piruvato Desidrogenase (Lipoamida)-Fosfatase/metabolismo
19.
Environ Int ; 185: 108520, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412565

RESUMO

Ambient ammonia (NH3) plays an important compound in forming particulate matters (PMs), and therefore, it is crucial to comprehend NH3's properties in order to better reduce PMs. However, it is not easy to achieve this goal due to the limited range/real-time NH3 data monitored by the air quality stations. While there were other studies to predict NH3 and its source apportionment, this manuscript provides a novel method (i.e., GEO-AI)) to look into NH3 predictions and their contribution sources. This study represents a pioneering effort in the application of a novel geospatial-artificial intelligence (Geo-AI) base model with parcel tracking functions. This innovative approach seamlessly integrates various machine learning algorithms and geographic predictor variables to estimate NH3 concentrations, marking the first instance of such a comprehensive methodology. The Shapley additive explanation (SHAP) was used to further analyze source contribution of NH3 with domain knowledge. From 2016 to 2018, Taichung's hourly average NH3 values were predicted with total variance up to 96%. SHAP values revealed that waterbody, traffic and agriculture emissions were the most significant factors to affect NH3 concentrations in Taichung among all the characteristics. Our methodology is a vital first step for shaping future policies and regulations and is adaptable to regions with limited monitoring sites.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Inteligência Artificial , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Material Particulado/análise
20.
Plant Divers ; 46(1): 126-133, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38343598

RESUMO

Lipids may play an important role in preventing gas embolisms by coating nanobubbles in xylem sap. Few studies on xylem sap lipids have been reported for temperate plants, and it remain unclear whether sap lipids have adaptational significance in tropical plants. In this study, we quantify the lipid composition of xylem sap for angiosperm species from a tropical savanna (seven species) and a seasonal rainforest (five species) using mass spectrometry. We found that all twelve species studied contained lipids in their xylem sap, including galactolipids, phospholipids and triacylglycerol, with a total lipid concentration ranging from 0.09 to 0.26 nmol/L. There was no difference in lipid concentration or composition between plants from the two sites, and the lipid concentration was negatively related to species' open vessel volume. Furthermore, savanna species showed little variation in lipid composition between the dry and the rainy season. These results support the hypothesis that xylem sap lipids are derived from the cytoplasm of individual conduit cells, remain trapped inside individual conduits, and undergo few changes in composition over consecutive seasons. A xylem sap lipidomic data set, which includes 12 tropical tree species from this study and 11 temperate tree species from literature, revealed no phylogenetic signals in lipid composition for these species. This study fills a knowledge gap in the lipid content of xylem sap in tropical trees and provides additional support for their common distribution in xylem sap of woody angiosperms. It appears that xylem sap lipids have no adaptive significance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...