Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2406093, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865651

RESUMO

Aqueous Zn-ion batteries featuring with intrinsic safety and low cost are highly desirable for large-scale energy storage, but the unstable Zn-metal anode resulting from uncontrollable dendrite growth and grievous hydrogen evolution reaction (HER) shortens their cycle life. Herein, a feasible in situ self-reconfiguration strategy is developed to generate triple-gradient poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PDDA-TFSI)-Zn5(OH)8Cl2·H2O-Sn (PT-ZHC-Sn) artificial layer. The resulting triple-gradient interface consists of the spherical top layer PT with cation confinement and H2O inhibition, the dense intermediate layer ZHC nanosheet with Zn2+ conduction and electron shielding, and the bottom layer Znophilic Sn metal. The well-designed triple-gradient artificial interfacial layer synergistically facilitates rapid Zn2+ diffusion to regulate uniform Zn deposition and accelerates the desolvation process while suppressing HER. Consequently, the PT-ZHC-Sn@Zn symmetric cell achieves an ultralong lifespan over 6500 h at 0.5 mA cm-2 for 0.5 mAh cm-2. Furthermore, a full battery coupling with MnO2 cathode exhibits a 17.2% increase in capacity retention compared with bare Zn anode after 1000 cycles. The in situ self-reconfiguration strategy is also applied to prepare triple-gradient PT-ZHC-In, and the assembled Zn//Cu cell operates steadily for over 8400 h while maintaining Coulombic efficiency of 99.6%. This work paves the way to designing multicomponent gradient interface for stable Zn-metal anodes.

2.
Adv Mater ; 36(19): e2311082, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38288858

RESUMO

Hydrogel electrolytes (HEs), characterized by intrinsic safety, mechanical stability, and biocompatibility, can promote the development of flexible aqueous zinc-ion batteries (FAZIBs). However, current FAZIB technology is severely restricted by the uncontrollable dendrite growth arising from undesirable reactions between the HEs with sluggish ionic conductivity and Zn metal. To overcome this challenge, this work proposes a molecular engineering strategy, which involves the introduction of oxygen-rich poly(urea-urethane) (OR-PUU) into polyacrylamide (PAM)-based HEs. The OR-PUU/PAM HEs facilitate rapid ion transfer through their ionic hopping migration mechanism, resulting in uniform and orderly Zn2+ deposition. The abundant polar groups on the OR-PUU molecules in OR-PUU/PAM HEs break the inherent H-bond network, tune the solvation structure of hydrated Zn2+, and inhibit the occurrence of side reactions. Moreover, the interaction of hierarchical H-bonds in the OR-PUU/PAM HEs endows them with self-healability, enabling in situ repair of cracks induced by plating/stripping. Consequently, Zn symmetric cells incorporating the novel OR-PUU/PAM HEs exhibit a long cycling life of 2000 h. The resulting Zn-MnO2 battery displays a low capacity decay rate of 0.009% over 2000 cycles at 2000 mA g-1. Overall, this work provides valuable insights to facilitate the realization of dendrite-free Zn-metal anodes through the molecular engineering of HEs.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38039069

RESUMO

Aqueous Zn-ion batteries offer the advantages of greater security and lower fabrication costs over their lithium-ion counterparts. However, their further advancement and practical application are hindered by the drastic decay in their performance due to the uncontrollable dendrite growth on Zn anodes. In this study, we fabricated a versatile three-dimensional (3D) interfacial layer (3D PVDF-Zn(TFO)2 (PVDF: poly(vinylidene fluoride); TFO: trifluoromethanesulfonate), which simultaneously formed porous Zn-metal anodes (PZn) with an enhanced (002) texture, via a in situ etching scheme. The 3D PVDF-Zn(TFO)2@PZn symmetrical cells leverage the advantages of surface coating and 3D porous architectures to yield extra-long cyclic lifetimes of over 5300 h (0.1 mA cm-2). The fabricated anodes were found to be compatible with MnO2 cathodes, and the resulting full batteries delivered an outstanding capacity of 336 mAh g-1 at 0.1 A g-1 and exhibited impressive long-term reversibility with a capacity retention of 78.7% for 2000 cycles. The proposed coating strategy is viable for developing porous structures with cutting-edge designs and for textured surface engineering.

4.
Small ; 15(33): e1902878, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31250965

RESUMO

Wearable devices are mainly based on plastic substrates, such as polyethylene terephthalate and polyethylene naphthalate, which causes environmental pollution after use due to the long decomposition periods. This work reports on the fabrication of a biodegradable and biocompatible transparent conductive electrode derived from bamboo for flexible perovskite solar cells. The conductive bioelectrode exhibits extremely flexible and light-weight properties. After bending 3000 times at a 4 mm curvature radius or even undergoing a crumpling test, it still shows excellent electrical performance and negligible decay. The performance of the bamboo-based bioelectrode perovskite solar cell exhibits a record power conversion efficiency (PCE) of 11.68%, showing the highest efficiency among all reported biomass-based perovskite solar cells. It is remarkable that this flexible device has a highly bendable mechanical stability, maintaining over 70% of its original PCE during 1000 bending cycles at a 4 mm curvature radius. This work paves the way for perovskite solar cells toward comfortable and environmentally friendly wearable devices.

5.
Mater Sci Eng C Mater Biol Appl ; 62: 779-86, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26952484

RESUMO

The strontium-substituted hydroxyapatite microspheres (SrHA) incorporated alginate composite microspheres (SrHA/Alginate) were prepared via adding SrHA/alginate suspension dropwise into calcium chloride solution, in which the gel beads were formed by means of crosslinking reaction. The structure, morphology and in vitro bioactivity of the composite microspheres were studied by using XRD, SEM and EDS methods. The biological behaviors were characterized and analyzed through inductively coupled plasma optical emission spectroscopy (ICP-OES), CCK-8, confocal laser microscope and ALP activity evaluations. The experimental results indicated that the synthetic SrHA/Alginate showed similar morphology to the well-known alginate microspheres (Alginate) and both of them possessed a great in vitro bioactivity. Compared with the control Alginate, the SrHA/Alginate enhanced MC3T3-E1 cell proliferation and ALP activity by releasing osteoinductive and osteogenic Sr ions. Furthermore, vancomycin was used as a model drug to investigate the drug release behaviors of the SrHA/Alginate, Alginate and SrHA. The results suggested that the SrHA/Alginate had a highest drug-loading efficiency and best controlled drug release properties. Additionally, the SrHA/Alginate was demonstrated to be pH-sensitive as well. The increase of the pH value in phosphate buffer solution (PBS) accelerated the vancomycin release. Accordingly, the multifunctional SrHA/Alginate can be applied in the field of bioactive drug carriers and bone filling materials.


Assuntos
Alginatos/química , Materiais Biocompatíveis/química , Portadores de Fármacos/química , Microesferas , Fosfatase Alcalina/metabolismo , Animais , Materiais Biocompatíveis/farmacologia , Regeneração Óssea/fisiologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Concentração de Íons de Hidrogênio , Hidroxiapatitas/química , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Estrôncio/química , Vancomicina/química , Vancomicina/metabolismo
6.
J Mater Chem B ; 3(21): 4377-4387, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32262781

RESUMO

Multifunctional biocompatible scaffolds with enhanced osteogenic capacity coupled with magnetic and magnetothermal properties are of great interest for the repair of large bone defects resulting from the resection of tumors. In the present study, we created borosilicate bioactive glass (BG) scaffolds loaded with varying amounts (5-15 wt%) of Fe3O4 magnetic nanoparticles (MNPs) and evaluated their performance in vitro and in vivo. The incorporation of MNPs endowed scaffolds with excellent magnetic, controlled magnetothermal properties and higher mechanical capacity. The MNP-loaded scaffolds were not toxic to human bone marrow-derived stem cells (hBMSCs) cultured on the scaffolds in vitro. The alkaline phosphatase activity and the osteogenic gene expression of the hBMSCs increased with increasing amount of MNPs in the scaffolds. When implanted in rat calvarial defects for 8 weeks, the scaffolds loaded with 15 wt% MNPs showed a significantly better capacity to regenerate bone when compared to the scaffolds without the MNPs. These MNP-loaded BG scaffolds are promising implants for regenerating bone in defects resulting from tumor resection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...