Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27306, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509987

RESUMO

Currently, stem cells are a prominent focus of regenerative engineering research. However, due to the limitations of commonly used stem cell sources, their application in therapy is often restricted to the experimental stage and constrained by ethical considerations. In contrast, urine-derived stem cells (USCs) offer promising advantages for clinical trials and applications. The noninvasive nature of the collection process allows for repeated retrieval within a short period, making it a more feasible option. Moreover, studies have shown that USCs have a protective effect on organs, promoting vascular regeneration, inhibiting oxidative stress, and reducing inflammation in various acute and chronic organ dysfunctions. The application of USCs has also been enhanced by advancements in biomaterials technology, enabling better targeting and controlled release capabilities. This review aims to summarize the current state of research on USCs, providing insights for future applications in basic and clinical settings.

2.
Aging (Albany NY) ; 14(17): 6957-6974, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36057261

RESUMO

Fibroblasts (FBs) are the most important functional cells in the process of wound repair, and their functions can be activated by different signals at the pathological site. Although wound repair is associated with microenvironmental stiffness, the effect of matrix stiffness on FBs remains elusive. In this study, TGF-ß1 was used to mimic the fibrotic environment under pathological conditions. We found that the soft substrates made FBs slender compared with tissue culture plastic, and the main altered biological function was the inhibition of proliferation and differentiation ability. Through PPI and WGCNA analysis, 63 hub genes were found, including GADD45A, CDKN3, HIST2H3PS2, ACTB, etc., which may be the main targets of soft substrates affecting the proliferation and differentiation of FBs. Our findings not only provide a more detailed report on the effect of matrix stiffness on the function of human skin FBs, but also may provide new intervention ideas for improving scars and other diseases caused by excessive cell proliferation, with potential clinical application prospects.


Assuntos
Fibroblastos , Fator de Crescimento Transformador beta1 , Proliferação de Células/genética , Células Cultivadas , Humanos , Plásticos/farmacologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...