Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 662: 914-927, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382375

RESUMO

Ultrasound and X-rays possess remarkable tissue penetration capabilities, making them promising candidates for cancer therapy. Sonodynamic therapy, which utilizes ultrasound excitation, offers a safer alternative to radiotherapy and can be combined with X-rays to mitigate the adverse effects on normal tissues. In this study, we developed a bismuth-based heterostructure semiconductor (BFIP) to enhance the efficacy of radiotherapy and sonodynamic therapy in treating breast cancer. The semiconductor is fabricated through a two-step process involving the synthesis of porous spherical bismuth fluoride and partially reduced to bismuth oxyiodide. Then, followed by surface modification with amphiphilic polyethylene glycol, BFIP is fabricated. Incorporating heavy atoms in the BFIP enhances radiosensitivity. The BFIP exhibits superior carrier separation efficiency compared to bismuth fluoride, generating a substantial quantity of reactive oxygen species upon ultrasound stimulation. Moreover, the BFIP effectively depletes glutathione through coordination and hole-mediated oxidation pathways, disrupting the tumor microenvironment and inducing oxidative stress. Encouraging results are acquired in both in vitro cell and in vivo tumor models. Our study provides a de-risking strategy by utilizing ultrasound as a partial substitute for X-rays in treating deep-seated tumors, offering a viable research direction for constructing a unified nanoplatform.


Assuntos
Bismuto , Neoplasias , Humanos , Fluoretos , Glutationa , Estresse Oxidativo , Polietilenoglicóis , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...