Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(20): 14307-14317, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722189

RESUMO

Biomolecules such as proteins and RNA could organize to form condensates with distinct microenvironments through liquid-liquid phase separation (LLPS). Recent works have demonstrated that the microenvironment of biomolecular condensates plays a crucial role in mediating biological activities, such as the partition of biomolecules, and the subphase organization of the multiphasic condensates. Ions could influence the phase transition point of LLPS, following the Hofmeister series. However, the ion-specific effect on the microenvironment of biomolecular condensates remains unknown. In this study, we utilized fluorescence lifetime imaging microscopy (FLIM), fluorescence recovery after photobleaching (FRAP), and microrheology techniques to investigate the ion effect on the microenvironment of condensates. We found that ions significantly affect the microenvironment of biomolecular condensates: salting-in ions increase micropolarity and reduce the microviscosity of the condensate, while salting-out ions induce opposing effects. Furthermore, we manipulate the miscibility and multilayering behavior of condensates through ion-specific effects. In summary, our work provides the first quantitative survey of the microenvironment of protein condensates in the presence of ions from the Hofmeister series, demonstrating how ions impact micropolarity, microviscosity, and viscoelasticity of condensates. Our results bear implications on how membrane-less organelles would exhibit varying microenvironments in the presence of continuously changing cellular conditions.


Assuntos
Condensados Biomoleculares , Condensados Biomoleculares/química , Íons/química , Recuperação de Fluorescência Após Fotodegradação , Microscopia de Fluorescência , Proteínas/química , Proteínas/metabolismo
2.
Anal Chem ; 96(11): 4369-4376, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38447031

RESUMO

The oxygen isotope composition of phosphate is a useful tool for studying biogeochemical phosphorus cycling. However, the current Ag3PO4 method is not only tedious in PO43- extraction and purification but also requires a large-sized sample at the micromole level, thereby limiting its application. Here, we present an approach to measuring the oxygen isotope composition, δ18O, of dissolved phosphate at the nanomole level using electrospray ionization Orbitrap mass spectrometry (ESI-Orbitrap-MS). We compared the reproducibility of δ18O measurements using the H2PO4- ions (m/z = 97 and 99 for H2P16O4- and H2P18O16O3-, respectively) and using the PO3- fragment ions (m/z = 79 and 81 for P16O3- and P18O16O2-, respectively) generated by source fragmentation and by higher-energy collisional dissociation, respectively. The results demonstrate that phosphate δ18O can be more reliably measured by the PO3- ions than by the H2PO4- ions. PO3- generated by source fragmentation at 40 V achieved the highest reproducibility for δ18O based on precision tests. Furthermore, the mass spectrum for a 50:50 µM mixed solution of phosphate and sulfate revealed that PO3- ions resulting from source fragmentation at 40 V are the predominant species in the Orbitrap analyzer. Notably, P16O3- ions (m/z: 79) are not interfered with by 32S16O3- (m/z: 80) ions. This is in contrast to the case for 1H2P16O4- ions, which share the same m/z value with 1H32S16O4- ions and exhibit much lower signal intensity than HSO4- ions. Using the PO3- fragment method and six phosphate standards with a wide range of δ18O values, we obtained a calibration line with a slope of 0.94 (R2 = 0.98). The overall uncertainty for ESI-Orbitrap-MS phosphate δ18O measurement was 0.8‰ (n = 30; 1 SD). With much room for improvement, the PO3- fragment method presents a better approach to measuring the phosphate oxygen isotope composition, applicable to nanomole sample sizes in a liquid phase.

3.
bioRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37034777

RESUMO

The phase separation of intrinsically disordered proteins is emerging as an important mechanism for cellular organization. However, efforts to connect protein sequences to the physical properties of condensates, i.e., the molecular grammar, are hampered by a lack of effective approaches for probing high-resolution structural details. Using a combination of multiscale simulations and fluorescence lifetime imaging microscopy experiments, we systematically explored a series of systems consisting of diblock elastin-like polypeptides (ELP). The simulations succeeded in reproducing the variation of condensate stability upon amino acid substitution and revealed different microenvironments within a single condensate, which we verified with environmentally sensitive fluorophores. The interspersion of hydrophilic and hydrophobic residues and a lack of secondary structure formation result in an interfacial environment, which explains both the strong correlation between ELP condensate stability and interfacial hydrophobicity scales, as well as the prevalence of protein-water hydrogen bonds. Our study uncovers new mechanisms for condensate stability and organization that may be broadly applicable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...