Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 12: 775528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925033

RESUMO

Fatty acid ß-oxidation is an essential pathogenic mechanism in nonalcoholic fatty liver disease (NAFLD), and TATA-box binding protein associated factor 9 (TAF9) has been reported to be involved in the regulation of fatty acid ß-oxidation. However, the function of TAF9 in NAFLD, as well as the mechanism by which TAF9 is regulated, remains unclear. In this study, we aimed to investigate the signaling mechanism underlying the involvement of TAF9 in NAFLD and the protective effect of the natural phenolic compound Danshensu (DSS) against NAFLD via the HDAC1/TAF9 pathway. An in vivo model of high-fat diet (HFD)-induced NAFLD and a palmitic acid (PA)-treated AML-12 cell model were developed. Pharmacological treatment with DSS significantly increased fatty acid ß-oxidation and reduced lipid droplet (LD) accumulation in NAFLD. TAF9 overexpression had the same effects on these processes both in vivo and in vitro. Interestingly, the protective effect of DSS was markedly blocked by TAF9 knockdown. Mechanistically, TAF9 was shown to be deacetylated by HDAC1, which regulates the capacity of TAF9 to mediate fatty acid ß-oxidation and LD accumulation during NAFLD. In conclusion, TAF9 is a key regulator in the treatment of NAFLD that acts by increasing fatty acid ß-oxidation and reducing LD accumulation, and DSS confers protection against NAFLD through the HDAC1/TAF9 pathway.

2.
Toxicol Appl Pharmacol ; 432: 115758, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678374

RESUMO

Mitochondrial dysfunction is a major factor in nonalcoholic fatty liver disease (NAFLD), preceding insulin resistance and hepatic steatosis. Carnosol (CAR) is a kind of diterpenoid with antioxidant, anti-inflammatory and antitumor activities. Peroxiredoxin 3 (PRDX3), a mitochondrial H2O2-eliminating enzyme, undergoes overoxidation and subsequent inactivation under oxidative stress. The purpose of this study was to investigate the protective effect of the natural phenolic compound CAR on NAFLD via PRDX3. Mice fed a high-fat diet (HFD) and AML-12 cells treated with palmitic acid (PA) were used to detect the molecular mechanism of CAR in NAFLD. We found that pharmacological treatment with CAR notably moderated HFD- and PA- induced steatosis and liver injury, as shown by biochemical assays, Oil Red O and Nile Red staining. Further mechanistic investigations revealed that CAR exerted anti-NAFLD effects by inhibiting mitochondrial oxidative stress, perturbation of mitochondrial dynamics, and apoptosis in vivo and in vitro. The decreased protein and mRNA levels of PRDX3 were accompanied by intense oxidative stress after PA intervention. Interestingly, CAR specifically bound PRDX3, as shown by molecular docking assays, and increased the expression of PRDX3. However, the hepatoprotection of CAR in NAFLD was largely abolished by specific PRDX3 siRNA, which increased mitochondrial dysfunction and exacerbated apoptosis in vitro. In conclusion, CAR suppressed lipid accumulation, mitochondrial dysfunction and hepatocyte apoptosis by activating PRDX3, mitigating the progression of NAFLD, and thus, CAR may represent a promising candidate for clinical treatment of steatosis.


Assuntos
Abietanos/farmacologia , Apoptose/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Peroxirredoxina III/metabolismo , Animais , Antioxidantes/farmacologia , Linhagem Celular , Dieta Hiperlipídica , Modelos Animais de Doenças , Ativação Enzimática , Hepatócitos/enzimologia , Hepatócitos/patologia , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo/efeitos dos fármacos , Ácido Palmítico/toxicidade , Peroxirredoxina III/genética
3.
Pharmacol Res ; 160: 105197, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32942015

RESUMO

Parkin is a crucial protein that promotes the clearance of damaged mitochondria via mitophagy in neuron, and parkin mutations result in autosomal-recessive Parkinson's disease (AR-PD). However, the exact mechanisms underlying the regulation of Parkin-mediated mitophagy in PD remain unclear. In this study, PD models were generated through incubation of SH-SY5Y cells with 1-methyl-4-phenylpyridinium ion (MPP+, 1.5 mM for 24 h) and intraperitoneal injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg for five consecutive days) in mice. A Bioinformatics database was used to identify Parkin-targeting microRNAs (miRNAs). Then, miR-103a-3p agomir, miR-103a-3p antagomir and Parkin siRNA were used to assess the effects of miR-103a-3p/Parkin/Ambra1 signaling-mediated mitophagy in PD in vitro and in vivo. The protein and mRNA levels of Parkin and Ambra1 were significantly decreased, while miR-103a-3p, which is a highly expressed miRNA in the human brain, was obviously increased in PD mouse and SH-SY5Y cell models. Moreover, miR-103a-3p suppressed Parkin expression by targeting a conserved binding site in the 3'-untranslated region (UTR) of Parkin mRNA. Importantly, miR-103a-3p inhibition resulted in neuroprotective effects and improved mitophagy in vitro and in vivo, whereas Parkin siRNA strongly abolished these effects. These findings suggested that miR-103a-3p inhibition has neuroprotective effects in PD, which may be involved in regulating mitophagy through the Parkin/Ambra1 pathway. Modulating miR-103a-3p levels may be an applicable therapeutic strategy for PD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , MicroRNAs/genética , Mitofagia/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular , Biologia Computacional , Dopamina/metabolismo , Humanos , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Mutação Puntual , RNA Interferente Pequeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...