Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 237(Pt 1): 116975, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37640094

RESUMO

A large amount of nitrogen remains in ion-absorption rare earth tailings with in-situ leaching technology, and it continually ends up in groundwater sources. However, the distribution and transport of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) across tailings with both depth and hill slopes is still unknown. In this study, the amount of NH4+-N and nitrate nitrogen (NO3--N) was determined in tailings, and a soil column leaching experiment, served to assess the transport and distribution following mine closure. Firstly, a high concentration of NH4+-N in the leachate at the initial leaching stage was detected, up to 2000 mg L-1, and the concentration of NH4+-N clearly diminished as time passed. Meanwhile, the NH4+-N contents remained relatively high in soil. Secondly, both the content of NH4+-N and NO3--N varied greatly according to vertical distribution after leaching lasting several years. The amounts of NH4+-N and NO3--N in surface soil were much smaller than those in deep soil, with 3-4 orders of magnitude variation with depth. Thirdly, when disturbed by NH4+-N, the pH not only diminished but also changed irregularly as depth increased. Fourthly, although the amount of NO3--N was smaller than that of NH4+-N, both their distribution trend was similar with depth. In fact, NH4+-N and NO3--N were significantly correlated but this declined from the knap to the piedmont. Based on these results, it is suggested that mining activity could cause nitrogen to be dominated by NH4+-N and acidification in a tailing even if leaching occurs over several years. NO3--N derived from NH4+-N transports easily and it becomes the main nitrogen pollutant with the potential to be a long-lasting threat to the environment around a mine.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36497776

RESUMO

Soil erodibility research is of theoretical and practical significance to the prediction and prevention of regional soil erosion. At present, the study on soil erodibility in the lateritic red soil area of eastern Guangdong province is relatively lacking. Taking the forest land soil of the Yinna mountainous area as the research object, the physical and chemical properties (organic matter mass fraction, texture, moisture, bulk density, pH, aggregate content) of soil samples at different altitudes were measured with field survey sampling and indoor analysis. Soil erodibility K values were simulated with different models (the EPIC model, the Torri model, and the Shirazi model) and the regional applicability of the K simulation models was discussed. The influence of soil properties on soil erodibility was analyzed. The results showed that: (1) K values in the Yinna mountainous area are between 0.0250 and 0.0331 t·hm2·h/MJ·mm·hm2, and the K value in the subsoil layer (20-40 cm) is higher than that of the topsoil layer (0-20 cm). These values decreased significantly with the increase of altitude. The soil in the study area belongs to low-medium to medium erodible soil types. (2) The three models have certain applicability in the Yinna mountainous area, but the simulation results still lack validation. (3) Soil particle size composition is the most important factor affecting the K value in the study area. As far as the topsoil is concerned, K values increase with the increase of clay and silt content and decrease with the increase of sand content and aggregate stability. Soil erodibility has no significant correlation with pH and bulk density and has no clear relationship with the content of soil organic carbon and soil moisture. The research results can provide basic data for regional soil and water conservation and the construction of K value databases of different soil types in China.


Assuntos
Carbono , Solo , Solo/química , Florestas , China , Tamanho da Partícula
3.
Artigo em Inglês | MEDLINE | ID: mdl-32486403

RESUMO

The coronavirus disease 2019 (COVID-19) epidemic has had a crucial influence on people's lives and socio-economic development throughout China and across the globe since December 2019. An understanding of the spatiotemporal patterns and influencing factors of the COVID-19 epidemic on multiple scales could benefit the control of the outbreak. Therefore, we used spatial autocorrelation and Spearman's rank correlation methods to investigate these two topics, respectively. The COVID-19 epidemic data reported publicly and relevant open data in Hubei province were analyzed. The results showed that (1) at both prefecture and county levels, the global spatial autocorrelation was extremely significant for the cumulative confirmed COVID-19 cases (CCC) in Hubei province from 30 January to 18 February 2020. Further, (2) at both levels, the significant hotspot and cluster/outlier area was observed solely in Wuhan city and most of its districts/sub-cities from 30 January to 18 February 2020. (3) At the prefecture level in Hubei province, the number of CCC had a positive and extremely significant correlation (p < 0.01) with the registered population (RGP), resident population (RSP), Baidu migration index (BMI), regional gross domestic production (GDP), and total retail sales of consumer goods (TRS), respectively, from 29 January to 18 February 2020 and had a negative and significant correlation (p < 0.05) with minimum elevation (MINE) from 2 February to 18 February 2020, but no association with the land area (LA), population density (PD), maximum elevation (MAXE), mean elevation (MNE), and range of elevation (RAE) from 23 January to 18 February 2020. (4) At the county level, the number of CCC in Hubei province had a positive and extremely significant correlation (p < 0.01) with PD, RGP, RSP, GDP, and TRS, respectively, from 27 January to 18 February 2020, and was negatively associated with MINE, MAXE, MNE, and RAE, respectively, from 26 January to 18 February 2020, and negatively associated with LA from 30 January to 18 February 2020. It suggested that (1) the COVID-19 epidemic at both levels in Hubei province had evident characteristics of significant global spatial autocorrelations and significant centralized high-risk outbreaks, and had an extremely significant association with social and economic factors. (2) The COVID-19 epidemics were significantly associated with the natural factors, such as LA, MAXE, MNE, and RAE, -only at the county level, not at the prefecture level, from 2 February to 18 February 2020. (3) The COVID-19 epidemics were significantly related to the socioeconomic factors, such as RGP, RSP, TRS, and GDP, at both levels from 26 January to 18 February 2020. It is desired that this study enrich our understanding of the spatiotemporal patterns and influencing factors of the COVID-19 epidemic and benefit classified prevention and control of the COVID-19 epidemic for policymakers.


Assuntos
Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Análise Espaço-Temporal , Betacoronavirus , COVID-19 , China/epidemiologia , Surtos de Doenças , Humanos , Pandemias , Características de Residência , SARS-CoV-2 , Fatores Socioeconômicos
4.
Chemosphere ; 252: 126512, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32220716

RESUMO

Hydroponic experiments with different cadmium (Cd) concentrations were conducted to explore the impacts of nutrient allocation on the Cd enrichment of Bermuda grass. The results demonstrated with the Cd concentration increase, the accumulation of nitrogen (N), phosphorus (P) and potassium (K) in roots, stems and leaves increased first and then decreased, while the accumulation of Cd had no significant difference. The biomass and N, P and K accumulation of CD1 and CD2 were significantly different from those of CD3 and CD4, but there was no significant difference in Cd accumulation. The root N, P and K distribution ratio of CD4 increased by 47.9%, 114.3% and 64.3% compared with those of CD2 treatment, the values of stem decreased by 29.4%, 22.4% and 17.2%, and the values of leaves increased by 15.8%, 19.8% and 23.6% respectively. The K ratio of root and leaf increased and that of stem decreased. Cd reduced N and K distribution ratio of stem and increased N and K distribution ratio of root and leaf. Pearson correlation analysis showed that the accumulation of N, P and K in stems was positively correlated with the accumulation of Cd in stems, and the accumulation of N, P and K in roots, stems and leaves were positively correlated with the Cd accumulation in leaves. Bermuda grass can schedule the nutrient allocation to adapt to the Cd absorption and enrichment in different organs under different Cd concentrations. In conclusion, nutrient allocation might affect the Cd accumulation of Bermuda grass.


Assuntos
Cádmio/metabolismo , Cynodon/metabolismo , Poluentes do Solo/metabolismo , Biomassa , Hidroponia , Minerais , Nitrogênio , Nutrientes , Fósforo , Folhas de Planta , Raízes de Plantas , Potássio
5.
Environ Res ; 180: 108897, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733727

RESUMO

This research project was designed to study the residues of OCPs (organochlorine pesticides) in the sediments of the Meijiang River Basin. Samples from the Meijiang River Basin were analyzed by gas chromatography-mass spectrometry after being pretreated by Soxhlet extraction, and their compositions, distributions and sources were evaluated. The current study presents the distribution of OCPs in the soils and sediments of the Meijiang River Basin. The results demonstrate that OCPs contamination is an important environmental concern due to the excessive use of these compounds in the agricultural and industrial sectors. The ratios of α-HCH/γ-HCH, (DDE + DDD)/∑DDTs, p,p-DDT/o,p-DDT, and DDD/DDE were used as indices for identifying the possible pollution sources and assessing the decomposition of the parent compounds and the recent γ-HCH and DDT inputs. At the XY (Xiyang) and DSGYY (Dongshenggongyeyan) sites, the pollutants had industrial origins. At other sites (QTH (Qutianhu), LXC (Longxichun), ZJC (Zhenjiaochun), HKC (Hekouchun), GS (Guangshan) and RGQ (Raogongqiao)), the pollution was caused by dissolved organic matter. The SHB site was polluted by transportation and upstream pollutants. At the SXC (Shixichun), YZX (Youzhihe), DSH (Dongshihe) and ZGG (Zhegupai) sites, the metabolite was p,p'-DDD and was produced in an environment with anaerobic conditions. At the FJC (Fujiangkou), QTH (Qiutianhu), GS (Guangshang) and MX (Meixi) sites, the metabolite was DDE and was produced under aerobic conditions. In view of the health risks, the risk quotients for these contaminants were evaluated, and all risk quotients were less than 1 under the best-case scenario. This result suggests that the investigated pollutants may pose little hazard to the local ecosystem. The sediments containing toxic pesticides had a less than 55% ecological risk, indicating that the ecological risk of HCHs in the soils from the Meijiang River Basin is low.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Poluentes Químicos da Água , China , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Rios , Solo , Triazinas/química , Água
6.
Heliyon ; 5(12): e02985, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31890952

RESUMO

Soil erosion is an important environmental problem in the area of the upper and middle of the Yellow River (AUMYR), China, one of the most severe soil erosion areas in the world. It is significantly influences on the ecological security and sustainable development of the region. Soil conservation (SC) service, as one of the most important regulating services provided by ecosystems, can alter soil and water processes and improve ecosystem services that ensure human welfare. Investigations of spatial and temporal characteristics of SC service play important roles in soil erosion control and ecosystem protection in AUMYR. In the past several years, restoration projects (e.g. the Grain-for-Green project) were implemented to improve SC in most of AUMYR. It is needed to evaluate the change of SC service brought about by the projects. This study carries out quantitative spatial analysis of SC services through Universal Soil Loss Equation (USLE) model and geographic information system (GIS) manipulation based on various datasets, such as remote sensing image, digital elevation model (DEM), climate, and land use/cover maps. Soil retention calculated as potential soil erosion (erosion without vegetation cover) minus actual soil erosion was applied as indicator for SC service. The results are like these. (1) The total amount and mean capacity of SC service in AUMYR were 7.22 billion t/a and 142.2 t/hm2·a in 2000 and 10.19 billion t/a and 200.8 t/hm2·a in 2010, respectively. South-east AUMYR exhibited a much higher capacity of soil retaining than the north-west. (2) Forest ecosystems displayed higher SC capacity than other types of ecosystems. Moreover, the SC capacity of ecosystems increased with the increasing of slope gradient. (3) Variations of SC rate (the ratio of SC to potential soil erosion in percentage) in different units (ecosystem, slope zone and city) were relatively small and ca. 90% of potentially eroded soil was retained in AUMYR. (4) The spatial characteristics of SC service in AUMYR were primarily controlled by topography at the regional scale. Vegetation cover restoration significantly improved the capacity of SC service in AUMYR in the midst year of 2000 and 2010. The results revealed that ecological restoration efforts significantly enhanced SC service of ecosystem in the study area.

7.
PLoS One ; 10(12): e0143928, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26633304

RESUMO

Different proxies have been used to investigate Quaternary paleoclimate change. Here, we used weathering of calcium nodules in paleosols on China's Loess Plateau as a proxy for Quaternary paleoclimate changes to provide an alternative indicator of these changes. Paleosol and carbonate nodules were collected from Luochuan and Lantian counties in Shaanxi Province, China. We found that this approach allowed quantitative reconstruction of temperature, rainfall, soil mineral composition, and the effects of weathering and leaching. The changes in carbonate content in the loess and paleosol sequences were controlled by alternating dry and wet climatic conditions. Nodule formation conditions were directly affected by the leaching and migration of elements. The loess and paleosol sequences developed calcium nodules, and their formation was closely related to the rainfall and leaching characteristics of the paleoclimate. The paleoclimate and soil minerals affected the vegetation types and directly influenced changes in the soil. During formation of the calcium nodules, the surface vegetation evolved slowly, and the number of species and quantity of vegetation both decreased.


Assuntos
Cálcio/análise , Mudança Climática , Sedimentos Geológicos/química , China
8.
Environ Sci Pollut Res Int ; 20(10): 7433-40, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23657718

RESUMO

Revegetation in the water-level-fluctuation zone (WLFZ) could stabilize riverbanks, maintain local biodiversity, and improve reservoir water quality in the Three Gorges Reservoir Region (TGRR). However, submergence and cadmium (Cd) may seriously affect the survival of transplantations. Bermuda grass (Cynodon dactylon) is a stoloniferous and rhizomatous prostrate weed displaying high growth rate. A previous study has demonstrated that Bermuda grass can tolerate deep submergence and Cd stress, respectively. In the present study, we further analyzed physiological responses of Bermuda grass induced by Cd-and-submergence stress. The ultimate goal was to explore the possibility of using Bermuda grass for revegetation in the WLFZ of China's TGRR and other riparian areas. The Cd-and-submergence-treated plants had higher malondialdehyde contents and peroxidase than control, and both increased with the Cd concentration increase. All treated plants catalase activity increased with the experimental duration increases, and their superoxide dismutase also gradually increased with the Cd concentration from 1 day to 15 days. Total biomass of the same Cd-and-submergence plants increased along the experimental duration as well. Plants exposed to Cd-and-submergence stress showed shoot elongation. The heights of all treated plants were taller than those of the control. Leaf chlorophyll contents, maximum leaf length, and soluble sugars contents of all the Cd-and-submergence-treated plants were more than those of the untreated control. Although Cd inhibits plants growth, decreases chlorophyll and biomass content, and with the submergence induced the leaf and shoot elongation, more part of the Cd-and-submergence stress plants appeared in the air, exhibited fast growth with maintenance of leaf color, which guaranteed the plants' photosynthesis, and ensured the total biomass and carbohydrate sustainability, further promoting Cd-and-submergence tolerance. The results imply that the negative effects of cadmium on Bermuda grass growth might be offset by submergence.


Assuntos
Cádmio/toxicidade , Cynodon/efeitos dos fármacos , Poluentes do Solo/toxicidade , Biodegradação Ambiental , Biomassa , China , Clorofila/metabolismo , Cynodon/metabolismo , Malondialdeído/metabolismo , Peroxidase/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Superóxido Dismutase/metabolismo
9.
J Environ Radioact ; 102(12): 1078-84, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21839555

RESUMO

A field experiment using rare earth elements (REEs) as tracers was conducted to investigate soil erosion processes on slope surfaces during rainfall events. A plot of 10m×2m×0.16m with a gradient of 20° (36.4%) was established and the plot was divided into two layers and four segments. Various REE tracers were applied to the different layers and segments to determine sediment dynamics under natural rainfall. Results indicated that sheet erosion accounted for more than 90% of total erosion when the rainfall amount and density was not large enough to generate concentrated flows. Sediment source changed in different sections on the slope surface, and the primary sediment source area tended to move upslope as erosion progressed. In rill erosion, sediment discharge mainly originated from the toe-slope and moved upwards as erosion intensified. The results obtained from this study suggest that multi-REE tracer technique is valuable in understanding the erosion processes and determining sediment sources.


Assuntos
Monitoramento Ambiental , Elementos da Série dos Lantanídeos/análise , Chuva , Solo/química , China , Sedimentos Geológicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...