Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Sci (Basel) ; 14(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38785855

RESUMO

Increasing evidence indicates that the addictive use of social media can have a detrimental effect on marital satisfaction, due mainly to the decrease in time and focus given to one's spouse. However, the impact of social media use among older couples remains under-investigated, and the research that does exist relies on individual-level data that do not allow the exploration of the dynamics between the dyadic partners. Therefore, the present study focused on older adults' use of short-video platforms, as these have been shown to be particularly addictive for older adults. A sample of 264 older couples was gathered (meanage = 68.02, SD = 8.68), and both spouses completed surveys reporting addictive use of short-video platforms, negative emotions, and marital satisfaction. Using an actor-partner interdependence model, we found an asymmetrical dyadic process in that the addictive use of short-video platforms by the wives was not only related to their own negative emotions, but also those of their spouse, as well as to decreased marital satisfaction. Meanwhile, addictive use by the husbands seemed to relate only to their own increased negative emotions, as well as to decreased marital satisfaction. Together, the findings from this study reveal dyadic dynamics with delineated pathways through which the addictive use of short-video platforms can damage older couples' interactive processes and marital satisfaction.

2.
Adv Healthc Mater ; : e2303419, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686434

RESUMO

Microvessels, including arterioles, capillaries, and venules, play an important role in regulating blood flow, enabling nutrient and waste exchange, and facilitating immune surveillance. Due to their important roles in maintaining normal function in human tissues, a substantial effort has been devoted to developing tissue-engineered models to study endothelium-related biology and pathology. Various engineering strategies have been developed to recapitulate the structural, cellular, and molecular hallmarks of native human microvessels in vitro. In this review, recent progress in engineering approaches, key components, and culture platforms for tissue-engineered human microvessel models is summarized. Then, tissue-specific models, and the major applications of tissue-engineered microvessels in development, disease modeling, drug screening and delivery, and vascularization in tissue engineering, are reviewed. Finally, future research directions for the field are discussed.

3.
Proc Natl Acad Sci U S A ; 120(27): e2305410120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364126

RESUMO

Cancer cells collectively invade using a leader-follower organization, but the regulation of leader cells during this dynamic process is poorly understood. Using a dual double-stranded locked nucleic acid (LNA) nanobiosensor that tracks long noncoding RNA (lncRNA) dynamics in live single cells, we monitored the spatiotemporal distribution of lncRNA during collective cancer invasion. We show that the lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) is dynamically regulated in the invading fronts of cancer cells and patient-derived spheroids. MALAT1 transcripts exhibit distinct abundance, diffusivity, and distribution between leader and follower cells. MALAT1 expression increases when a cancer cell becomes a leader and decreases when the collective migration process stops. Transient knockdown of MALAT1 prevents the formation of leader cells and abolishes the invasion of cancer cells. Taken together, our single-cell analysis suggests that MALAT1 is dynamically regulated in leader cells during collective cancer invasion.


Assuntos
Invasividade Neoplásica , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
4.
SLAS Technol ; 28(5): 345-350, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37220830

RESUMO

Transcription factors are essential regulators of various physiological and pathological processes. However, detecting transcription factor-DNA binding activities is often time-consuming and labor-intensive. Homogeneous biosensors that are compatible with mix-and-measure protocols have the potential to simplify the workflow for therapeutic screening and disease diagnostics. In this study, we apply a combined computational-experimental approach to investigate the design of a sticky-end probe biosensor, where the transcription factor-DNA complex stabilizes the fluorescence resonance energy transfer signal of the donor-acceptor pair. We design a sticky-end biosensor for the SOX9 transcription factor based on the consensus sequence and characterize its sensing performance. A systems biology model is also developed to investigate the reaction kinetics and optimize the operating conditions. Taken together, our study provides a conceptual framework for the design and optimization of sticky-end probe biosensors for homogeneous detection of transcription factor-DNA binding activity.


Assuntos
Técnicas Biossensoriais , DNA , Transferência Ressonante de Energia de Fluorescência/métodos , Técnicas Biossensoriais/métodos , Fatores de Transcrição
5.
Nat Mater ; 21(10): 1191-1199, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35927431

RESUMO

Cell reprogramming has wide applications in tissue regeneration, disease modelling and personalized medicine. In addition to biochemical cues, mechanical forces also contribute to the modulation of the epigenetic state and a variety of cell functions through distinct mechanisms that are not fully understood. Here we show that millisecond deformation of the cell nucleus caused by confinement into microfluidic channels results in wrinkling and transient disassembly of the nuclear lamina, local detachment of lamina-associated domains in chromatin and a decrease of histone methylation (histone H3 lysine 9 trimethylation) and DNA methylation. These global changes in chromatin at the early stage of cell reprogramming boost the conversion of fibroblasts into neurons and can be partially reproduced by inhibition of histone H3 lysine 9 and DNA methylation. This mechanopriming approach also triggers macrophage reprogramming into neurons and fibroblast conversion into induced pluripotent stem cells, being thus a promising mechanically based epigenetic state modulation method for cell engineering.


Assuntos
Reprogramação Celular , Histonas , Núcleo Celular/metabolismo , Cromatina/metabolismo , Metilação de DNA , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Lisina/genética , Lisina/metabolismo
6.
Front Mol Biosci ; 9: 807324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480877

RESUMO

Hybrid epithelial/mesenchymal cells (E/M) are key players in aggressive cancer metastasis. It remains a challenge to understand how these cell states, which are mostly non-existent in healthy tissue, become stable phenotypes participating in collective cancer migration. The transcription factor Nrf2, which is associated with tumor progression and resistance to therapy, appears to be central to this process. Here, using a combination of immunocytochemistry, single cell biosensors, and computational modeling, we show that Nrf2 functions as a phenotypic stability factor for hybrid E/M cells by inhibiting a complete epithelial-mesenchymal transition (EMT) during collective cancer migration. We also demonstrate that Nrf2 and EMT signaling are spatially coordinated near the leading edge. In particular, computational analysis of an Nrf2-EMT-Notch network and experimental modulation of Nrf2 by pharmacological treatment or CRISPR/Cas9 gene editing reveal that Nrf2 stabilizes a hybrid E/M phenotype which is maximally observed in the interior region immediately behind the leading edge. We further demonstrate that the Nrf2-EMT-Notch network enhances Dll4 and Jagged1 expression at the leading edge, which correlates with the formation of leader cells and protruding tips. Altogether, our results provide direct evidence that Nrf2 acts as a phenotypic stability factor in restricting complete EMT and plays an important role in coordinating collective cancer migration.

7.
Analyst ; 147(4): 722-733, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35084404

RESUMO

Double-stranded (ds) biosensors are homogeneous oligonucleotide probes for detection of nucleic acid sequences in biochemical assays and live cell imaging. Locked nucleic acid (LNA) modification can be incorporated in the biosensors to enhance the binding affinity, specificity, and resistance to nuclease degradation. However, LNA monomers in the quencher sequence can also prevent the target-fluorophore probe binding, which reduces the signal of the dsLNA biosensor. This study investigates the influence of LNA modification on dsLNA biosensors by altering the position and amount of LNA monomers present in the quencher sequence. We characterize the fluorophore-quencher interaction, target detection, and specificity of the biosensor in free solution and evaluate the performance of the dsLNA biosensor in 2D monolayers and 3D spheroids. The data indicate that a large amount of LNA monomers in the quencher sequence can enhance the specificity of the biosensor, but prevents effective target binding. Together, our results provide guidelines for improving the performance of dsLNA biosensors in nucleic acid detection and gene expression analysis in live cells.


Assuntos
Técnicas Biossensoriais , Análise de Célula Única , Sondas de Oligonucleotídeos , Oligonucleotídeos/genética
8.
Lab Chip ; 21(24): 4734-4742, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34739019

RESUMO

We report an on-chip platform for low-intensity pulsed ultrasound (LIPUS) stimulation of cells directly cultured on a biocompatible surface of a transparent ultrasound transducer (TUT) fabricated using lithium niobate. The high light transmittance (>80%) and compact size (3 mm × 3 mm × 2 mm) of TUTs allowed easy integration with powerful optical microscopy techniques with no additional acoustic coupling and risk for contamination. TUTs were excited with varying acoustic excitation parameters (voltage amplitude and duty cycle) and resulting live cell calcium signaling was simultaneously imaged using time-lapse confocal microscopy, while the temperature change was measured by a thermocouple. Quantitative single-cell fluorescence analysis revealed the dynamic calcium signaling responses and together with the temperature measurements elucidated the optimal stimulation parameters for non-thermal and thermal effects. The fluorescence change profile was distinct from the recorded temperature change (<1 degree Celsius) profile under LIPUS treatment conditions. Cell dead assay results confirmed cells remain viable after the LIPUS treatment. These results confirmed that the TUT platform enables controllable, safe, high-throughput, and uniform mechanical stimulation of all plated cells. The on-chip LIPUS stimulation using TUTs has the potential to attract several in vitro and in vivo biomedical applications such as controlling stem cell differentiation and proliferation, studying biomechanical properties of cancer cells, and gaining fundamental insights into mechanotransduction pathways when integrated with state-of-the-art high-speed and high-resolution microscopy techniques.


Assuntos
Mecanotransdução Celular , Ondas Ultrassônicas , Diferenciação Celular , Transdução de Sinais
9.
SLAS Technol ; 25(6): 513-521, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32833548

RESUMO

The emergence of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens the health of the global population and challenges our preparedness for pandemic threats. Previous outbreaks of coronaviruses and other viruses have suggested the importance of diagnostic technologies in fighting viral outbreaks. Nucleic acid detection techniques are the gold standard for detecting SARS-CoV-2. Viral antigen tests and serological tests that detect host antibodies have also been developed for studying the epidemiology of COVID-19 and estimating the population that may have immunity to SARS-CoV-2. Nevertheless, the availability, cost, and performance of existing viral diagnostic technologies limit their practicality, and novel approaches are required for improving our readiness for global pandemics. Here, we review the principles and limitations of major viral diagnostic technologies and highlight recent advances of molecular assays for COVID-19. In addition, we discuss emerging technologies, such as clustered regularly interspaced short palindromic repeats (CRISPR) systems, high-throughput sequencing, and single-cell and single-molecule analysis, for improving our ability to understand, trace, and contain viral outbreaks. The prospects of viral diagnostic technologies for combating future pandemic threats are presented.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/fisiologia , Sistemas CRISPR-Cas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pandemias , Análise de Célula Única
10.
Anal Chem ; 91(4): 2626-2633, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30720274

RESUMO

The functions of RNA are tightly regulated via diverse intracellular mechanisms. However, probing the complex dynamics of endogenous RNA in live cells is a challenging task. In the present study, a DNA transformer is designed for visualizing the abundance, distribution, and mobility of endogenous mRNAs in live human cells. The transformable tetrahedral DNA (T-TED) probe has a flexible hinge structure and is programmed to conform into a 3D tetrahedron upon binding with the target mRNA. By incorporating Förster resonance energy transfer (FRET) imaging, super-resolution localization, and single particle tracking, the T-TED biosensor is applied for investigating the dynamics of Delta-like ligand 4 (Dll4) mRNA, which encodes a transmembrane protein, in human pulmonary microvascular endothelial cells. The data reveal unprecedented subpopulations of Dll4 mRNA with distinct mobility organized spatially in association with the endoplasmic reticulum and microtubule networks. The ability to monitor the dynamics of endogenous RNA in live human cells will provide a useful tool for studying the functions and regulation of RNA.


Assuntos
Técnicas Biossensoriais/métodos , Sondas de DNA/química , DNA/química , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação ao Cálcio/genética , Sobrevivência Celular , DNA/genética , Sondas de DNA/genética , Dipeptídeos/farmacologia , Fluoresceínas/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Humanos , Células MCF-7 , Conformação de Ácido Nucleico/efeitos dos fármacos , Hibridização de Ácido Nucleico , RNA Mensageiro/genética , Receptores Notch/antagonistas & inibidores
12.
ACS Appl Mater Interfaces ; 8(28): 17976-86, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27359036

RESUMO

Left-right (LR) asymmetry of tissue/organ structure is a morphological feature essential for many tissue functions. The ability to incorporate the LR formation in constructing tissue/organ replacement is important for recapturing the inherent tissue structure and functions. However, how LR asymmetry is formed remains largely underdetermined, which creates significant hurdles to reproduce and regulate the formation of LR asymmetry in an engineering context. Here, we report substrate rigidity functioning as an effective switch that turns on the development of LR asymmetry. Using micropatterned cell-adherent stripes on rigid substrates, we found that cells collectively oriented at a LR-biased angle relative to the stripe boundary. This LR asymmetry was initiated by a LR-biased migration of cells at stripe boundary, which later generated a velocity gradient propagating from stripe boundary to the center. After a series of cell translocations and rotations, ultimately, an LR-biased cell orientation within the micropatterned stripe was formed. Importantly, this initiation and propagation of LR asymmetry was observed only on rigid but not on soft substrates, suggesting that the LR asymmetry was regulated by rigid substrate probably through the organization of actin cytoskeleton. Together, we demonstrated substrate rigidity as a determinant factor that mediates the self-organizing LR asymmetry being unfolded from single cells to multicellular organization. More broadly, we anticipate that our findings would pave the way for rebuilding artificial tissue constructs with inherent LR asymmetry in the future.


Assuntos
Polaridade Celular/fisiologia , Citoesqueleto de Actina/fisiologia , Animais , Moléculas de Adesão Celular , Movimento Celular/fisiologia , Núcleo Celular/fisiologia , Tamanho Celular , Dimetilpolisiloxanos , Camundongos , Modelos Biológicos , Células NIH 3T3 , Tensão Superficial
13.
ACS Nano ; 10(8): 7409-17, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27389867

RESUMO

Cellular force regulates many types of cell mechanics and the associated physiological behaviors. Recent evidence suggested that cell motion with left-right (LR) bias may be the origin of LR asymmetry in tissue architecture. As actomyosin activity was found essential in the process, it predicts a type of cellular force that coordinates the development of LR asymmetry in tissue formation. However, due to the lack of appropriate platform, cellular force with LR bias has not yet been found. Here we report a nanowire magnetoscope that reveals a rotating force-torque-exerted by cells. Ferromagnetic nanowires were deposited and internalized by micropatterned cells. Within a uniform, horizontal magnetic field, the nanowires that initially aligned with the magnetic field were subsequently rotated due to the cellular torque. We found that the torque is LR-biased depending on cell types. While NIH 3T3 fibroblasts and human vascular endothelial cells exhibited counterclockwise torque, C2C12 myoblasts showed torque with slight clockwise bias. Moreover, an actin ring composed of transverse arcs and radial fibers was identified as a major factor determining the LR bias of cellular torque, since the disruption of actin ring by biochemical inhibitors or elongated cell shape abrogated the counterclockwise bias of NIH 3T3 fibroblasts. Our finding reveals a LR-biased torque of single cells and a fundamental origin of cytoskeletal chirality. More broadly, we anticipate that our method will provide a different perspective on mechanics-related cell physiology and force transmission necessary for LR propagation in tissue formation.


Assuntos
Actomiosina/química , Citoesqueleto , Nanofios , Animais , Movimento Celular , Humanos , Camundongos , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...