Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(23): 15218-15228, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38819133

RESUMO

High-resolution and dynamic bioimaging is essential in life sciences and biomedical applications. In recent years, microspheres combined with optical microscopes have offered a low cost but promising solution for super-resolution imaging, by breaking the diffraction barrier. However, challenges still exist in precisely and parallelly superlens controlling using a noncontact manner, to meet the demands of large-area scanning imaging for desired targets. This study proposes an acoustic wavefield-based strategy for assembling and manipulating micrometer-scale superlens arrays, in addition to achieving on-demand scanning imaging through phase modulation. In experiments, acoustic pressure nodes are designed to be comparable in size to microspheres, allowing spatially dispersed microspheres to be arranged into arrays with one unit per node. Droplet microlenses with various diameters can be adapted in the array, allowing for a wide range of spacing periods by applying different frequencies. In addition, through the continuous phase shifting in the x and y directions, this acoustic superlens array achieves on-demand moving for the parallel high-resolution virtual image capturing and scanning of nanostructures and biological cell samples. As a comparison, this noncontact and cost-effective acoustic manner can obtain more than ∼100 times the acquisition efficiency of a single lens, holding promise in advancing super-resolution microscopy and subcellular-level bioimaging.


Assuntos
Acústica , Humanos , Microesferas , Lentes , Tamanho da Partícula
2.
Artigo em Inglês | MEDLINE | ID: mdl-32850711

RESUMO

Plenty of microbes in our human body play a vital role in the process of cell physiology. In recent years, there is accumulating evidence indicating that microbes are closely related to many complex human diseases. In-depth investigation of disease-associated microbes can contribute to understanding the pathogenesis of diseases and thus provide novel strategies for the treatment, diagnosis, and prevention of diseases. To date, many computational models have been proposed for predicting microbe-disease associations using available similarity networks. However, these similarity networks are not effectively fused. In this study, we proposed a novel computational model based on multi-data integration and network consistency projection for Human Microbe-Disease Associations Prediction (HMDA-Pred), which fuses multiple similarity networks by a linear network fusion method. HMDA-Pred yielded AUC values of 0.9589 and 0.9361 ± 0.0037 in the experiments of leave-one-out cross validation (LOOCV) and 5-fold cross validation (5-fold CV), respectively. Furthermore, in case studies, 10, 8, and 10 out of the top 10 predicted microbes of asthma, colon cancer, and inflammatory bowel disease were confirmed by the literatures, respectively.

3.
PLoS One ; 15(5): e0228479, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413030

RESUMO

Terminator is a DNA sequence that gives the RNA polymerase the transcriptional termination signal. Identifying terminators correctly can optimize the genome annotation, more importantly, it has considerable application value in disease diagnosis and therapies. However, accurate prediction methods are deficient and in urgent need. Therefore, we proposed a prediction method "iterb-PPse" for terminators by incorporating 47 nucleotide properties into PseKNC-Ⅰ and PseKNC-Ⅱ and utilizing Extreme Gradient Boosting to predict terminators based on Escherichia coli and Bacillus subtilis. Combing with the preceding methods, we employed three new feature extraction methods K-pwm, Base-content, Nucleotidepro to formulate raw samples. The two-step method was applied to select features. When identifying terminators based on optimized features, we compared five single models as well as 16 ensemble models. As a result, the accuracy of our method on benchmark dataset achieved 99.88%, higher than the existing state-of-the-art predictor iTerm-PseKNC in 100 times five-fold cross-validation test. Its prediction accuracy for two independent datasets reached 94.24% and 99.45% respectively. For the convenience of users, we developed a software on the basis of "iterb-PPse" with the same name. The open software and source code of "iterb-PPse" are available at https://github.com/Sarahyouzi/iterb-PPse.


Assuntos
Análise de Sequência de DNA/métodos , Software , Regiões Terminadoras Genéticas , Bacillus subtilis , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator Rho/metabolismo , Terminação da Transcrição Genética
4.
RSC Adv ; 10(20): 11634-11642, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35496629

RESUMO

LncRNA and miRNA are two non-coding RNA types that are popular in current research. LncRNA interacts with miRNA to regulate gene transcription, further affecting human health and disease. Accurate identification of lncRNA-miRNA interactions contributes to the in-depth study of the biological functions and mechanisms of non-coding RNA. However, relying on biological experiments to obtain interaction information is time-consuming and expensive. Considering the rapid accumulation of gene information and the few computational methods, it is urgent to supplement the effective computational models to predict lncRNA-miRNA interactions. In this work, we propose a heterogeneous graph inference method based on similarity network fusion (SNFHGILMI) to predict potential lncRNA-miRNA interactions. First, we calculated multiple similarity data, including lncRNA sequence similarity, miRNA sequence similarity, lncRNA Gaussian nuclear similarity, and miRNA Gaussian nuclear similarity. Second, the similarity network fusion method was employed to integrate the data and get the similarity network of lncRNA and miRNA. Then, we constructed a bipartite network by combining the known interaction network and similarity network of lncRNA and miRNA. Finally, the heterogeneous graph inference method was introduced to construct a prediction model. On the real dataset, the model SNFHGILMI achieved AUC of 0.9501 and 0.9426 ± 0.0035 based on LOOCV and 5-fold cross validation, respectively. Furthermore, case studies also demonstrate that SNFHGILMI is a high-performance prediction method that can accurately predict new lncRNA-miRNA interactions. The Matlab code and readme file of SNFHGILMI can be downloaded from https://github.com/cj-DaSE/SNFHGILMI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...