Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Heliyon ; 10(10): e31375, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38831839

RESUMO

Articular cartilage damage and chondrocyte apoptosis are among the distinguishing features of osteoarthritis. (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphtylamine (NS8593) is a transient receptor potential cation channel subfamily M member 7 (TRPM7) channel inhibitor and was initially considered a potent inhibitor of small-conductance Ca2+-activated K+ channels(SK1-3 or KCa2.1-2.3 channels). Since SK is one of the targets for atrial fibrillation therapy, several studies have been conducted using NS8593 and it has been shown to be effective in improving atrial fibrillation in rats, dogs and horses. Recently, inhibition of TRPM7 has been reported to alleviate articular cartilage destruction. However, the role and mechanism of NS8593 on articular chondrocyte damage is unknown. The purpose of this study was to investigate the effect and mechanism of NS8593 on sodium nitroprusside (SNP)-induced chondrocyte apoptosis in vitro. The results showed that SNP decreased cell viability and induced chondrocyte apoptosis. NS8593 dose-dependently inhibited the SNP-induced decrease in cell viability and reduced chondrocyte apoptosis. In addition, SNP stimulation significantly increased the phosphorylation level of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING), and NS8593 treatment partially reversed the alteration of STING phosphorylation level. Treatment with the STING inhibitor H-151 inhibited SNP-induced chondrocyte apoptosis. These results suggest that NS8593 may inhibit SNP-induced chondrocyte apoptosis by suppressing the STING signaling pathway.

2.
Antioxid Redox Signal ; 40(4-6): 329-344, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-36738225

RESUMO

Significance: Oxidative stress is a common feature of autoimmune diseases. Low levels of reactive oxygen species (ROS) generation are important for various biological processes. Redox homeostasis can be disrupted when there is an imbalance between the production of ROS and the detoxification effect of antioxidants. Peroxiredoxins (PRDXs) are essential regulators of cellular redox signaling. Recent Advances: PRDXs are widely expressed antioxidant enzymes, and their physiological role is mainly to remove excess ROS in cells and reduce oxidative stress. Recent studies have shown that almost all PRDX subtypes are involved in the development of autoimmune diseases. Critical Issues: The pathogenesis of autoimmune diseases is complex, and effective treatments are lacking. Therefore, there is an urgent need to find new therapeutic targets. In this review, we discuss the functions of PRDXs and their pathophysiological roles in several autoimmune diseases. PRDXs may serve as potential targets for the treatment of autoimmune diseases. Future Directions: PRDXs are important in oxidative stress-mediated pathological situations. Future in-depth exploration of the mechanisms involved in regulating PRDXs in autoimmune diseases is needed to develop strategies targeting PRDXs for the treatment of autoimmune diseases. Antioxid. Redox Signal. 40, 329-344.


Assuntos
Estresse Oxidativo , Peroxirredoxinas , Peroxirredoxinas/metabolismo , Espécies Reativas de Oxigênio , Oxirredução , Antioxidantes/metabolismo
3.
Int Immunopharmacol ; 124(Pt A): 110878, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660594

RESUMO

PURPOSE: Identification of a role for, and the mechanism of action of, the acid-sensing ion channel 1a (ASIC1a) in M1 macrophage polarization, which results in osteoarthritis (OA)-associated chondrocyte senescence. METHOD: ASIC1a expression in synovial M1 macrophages of OA patients was assessed by immunofluorescence. A role for ASIC1a in M1 macrophage and chondrocyte senescence was assessed in a mouse OA model. RESULTS: ASIC1a expression was found to be upregulated in synovial M1 macrophages of OA patients. Extracellular acidification (pH 6.0) promoted M1 polarization of bone marrow derived macrophages (BMDMs), which was reversed by PcTx-1 or ASIC1a-siRNA. RNA-seq transcriptome results demonstrated a downregulation of M1 macrophage-associated genes in BMDMs after PcTx-1 treatment. Mechanistically, a role for the ASIC1a-cytidine/uridine monophosphate kinase 2 (CMPK2) axis in M1 macrophage polarization was demonstrated. The concentration of IL-18 was elevated in synovial fluid and supernatants of acid-activated BMDMs. In vitro, IL-18 stimulation or co-culture with acid-activated macrophages promoted chondrocyte senescence. In vivo, intra-articular administration of PcTx-1 reduced articular cartilage destruction and chondrocytes senescence in OA mice, which related to reduced numbers of M1 macrophages and IL-18 in affected joints. CONCLUSION: These results demonstrate a novel pathogenic process that results in OA cartilage damage, in which M1 macrophage derived IL-18 induces articular chondrocytes senescence. Further, the ASIC1a-CMPK2 axis was shown to positively regulate M1 macrophage polarization. Hence, ASIC1a is a promising treatment target for M1 macrophage-mediated diseases, such as OA.

4.
Biochem Pharmacol ; 215: 115707, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37506921

RESUMO

In vivo articular cartilage degeneration is an essential hallmark of osteoarthritis (OA), involving chondrocyte senescence, extracellular matrix degradation, chondrocyte death, cartilage loss, and bone erosion. Among them, chondrocyte death is one of the major factors leading to cartilage degeneration. Many studies have reported that various cell death modes, including apoptosis, ferroptosis, and autophagy, play a key role in OA chondrocyte death. Currently, there is insufficient understanding of OA pathogenesis, and there remains a lack of treatment methods to prevent OA and inhibit its progression. Studies suggest that OA prevention and treatment are mainly directed to arrest premature or excessive chondrocyte death. In this review, we a) discuss the forms of death of chondrocytes and the associations between them, b) summarize the critical factors in chondrocyte death, c) discuss the vital role of chondrocyte death in OA, d) and, explore new approaches for targeting the regulation of chondrocyte death in OA treatment.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Condrócitos/metabolismo , Osteoartrite/metabolismo , Cartilagem Articular/metabolismo , Apoptose
5.
Front Immunol ; 13: 997621, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275686

RESUMO

Rheumatoid arthritis (RA) is a common autoimmune disease characterized by chronic inflammation. Immune dysfunction is an essential mechanism in the pathogenesis of RA and directly linked to synovial inflammation and cartilage/bone destruction. Intermediate conductance Ca2+-activated K+ channel (KCa3.1) is considered a significant regulator of proliferation, differentiation, and migration of immune cells by mediating Ca2+ signal transduction. Earlier studies have demonstrated abnormal activation of KCa3.1 in the peripheral blood and articular synovium of RA patients. Moreover, knockout of KCa3.1 reduced the severity of synovial inflammation and cartilage damage to a significant extent in a mouse collagen antibody-induced arthritis (CAIA) model. Accumulating evidence implicates KCa3.1 as a potential therapeutic target for RA. Here, we provide an overview of the KCa3.1 channel and its pharmacological properties, discuss the significance of KCa3.1 in immune cells and feasibility as a drug target for modulating the immune balance, and highlight its emerging role in pathological progression of RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Membrana Sinovial , Artrite Experimental/patologia , Inflamação , Modelos Animais de Doenças , Colágeno
6.
Redox Biol ; 55: 102411, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35917680

RESUMO

A role for ferroptosis in articular cartilage destruction associated with rheumatoid arthritis (RA) has not been identified. We previously reported transient receptor potential melastatin 7 (TRPM7) expression was correlated with RA cartilage destruction. Herein, we further characterized a role for TRPM7 in chondrocyte ferroptosis. The expression of TRPM7 was found to be elevated in articular chondrocytes derived from adjuvant arthritis (AA) rats, human RA patients, and cultured chondrocytes treated with the ferroptosis inducer, erastin. TRPM7 knockdown or pharmacological inhibition protected primary rat articular chondrocytes and human chondrocytes (C28/I2 cells) from ferroptosis. Moreover, TRPM7 channel activity was demonstrated to contribute to chondrocyte ferroptosis by elevation of intracellular Ca2+. Mechanistically, the PKCα-NOX4 axis was found to respond to stimulation with erastin, which resulted in TRPM7-mediated chondrocyte ferroptosis. Meanwhile, PKCα was shown to directly bind to NOX4, which could be reduced by TRPM7 channel inhibition. Adeno-associated virus 9-mediated TRPM7 silencing or TRPM7 blockade with 2-APB alleviated articular cartilage destruction in AA rats and inhibited chondrocyte ferroptosis. Collectively, both genetic and pharmacological inhibitions of TRPM7 attenuated articular cartilage damage and chondrocyte ferroptosis via the PKCα-NOX4 axis, suggesting that TRPM7-mediated chondrocyte ferroptosis is a promising target for the prevention and treatment of RA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...