Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 8(57): 32775-32793, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-35547718

RESUMO

The TW17 ribozyme, a catalytic RNA selected from a pool of artificial RNA, is specific for the Zn2+-dependent hydrolysis of a phosphorothiolate thiolester bond. Here, we describe the organic synthesis of both guanosine α-thio-monophosphate and the substrates required for selecting and characterizing the TW17 ribozyme, and for deciphering the catalytic mechanism of the ribozyme. By successively substituting the substrate originally conjugated to the RNA pool with structurally modified substrates, we demonstrated that the TW17 ribozyme specifically catalyzes phosphorothiolate thiolester hydrolysis. Metal titration studies of TW17 ribozyme catalysis in the presence of Zn2+ alone, Zn2+ and Mg2+, and Zn2+ and [Co(NH3)6]3+ supported our findings that Zn2+ is absolutely required for ribozyme catalysis, and indicated that optimal ribozyme catalysis involves the presence of outer-sphere and one inner-sphere Mg2+. A survey of the TW17 ribozyme activity at various pHs revealed that the activity of the ribozyme critically depends on the alkaline conditions. Moreover, a GNRA tetraloop-containing ribozyme constructed with active catalysis in trans provided catalysis and multiple substrate turnover efficiencies significantly higher than ribozymes lacking a GNRA tetraloop. This research supports the essential roles of Zn2+, Mg2+, and a GNRA tetraloop in modulating the TW17 ribozyme structure for optimal ribozyme catalysis, leading also to the formulation of a proposed reaction mechanism for TW17 ribozyme catalysis.

2.
Molecules ; 19(9): 13965-75, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25197933

RESUMO

Marsdeniae tenacissimae Caulis (MTC) is a Chinese herbal medicine used mainly for treatment of cancer, whose pharmacologically active constituents responsible for its in vivo activity and clinical efficacy have not been clearly elucidated. In this study, total aglycones of MTC (ETA) showed the ability to sensitize KB-3-1, HeLa, HepG2 and K562 cells to paclitaxel treatment. More inspiringly, ETA markedly enhanced the antitumor activity of paclitaxel in nude mice bearing HeLa or KB-3-1 xenografts. Compared to treatment with paclitaxel alone, treatment with combination of paclitaxel and ETA achieved significant reduction in volume and weight of HeLa tumors (p<0.05), and remarkable inhibition to the growth of KB-3-1 tumors (p<10⁻6). ETA was characterized by the presence of a group of tenacigenin B ester derivatives, among which four reference compounds, 11α-O-tigloyl-12ß-O-acetyltenacigenin B, 11α,12ß-di-O-tigloyltenacigenin B, 11α-O-2-methylbutanoyl-12ß-O-tigloyltenacigenin B, and 11α-O-(2-methylbutanoyl)-12ß-O-benzoyltenacigenin B, accounted for 42.14% of the total peak area of 19 detectable components assayed by HPLC. Our study has identified ETA as a promising sensitizer for cancer chemotherapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Marsdenia/química , Paclitaxel/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...