Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1305358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529067

RESUMO

Introduction: Early detection of leaf diseases is necessary to control the spread of plant diseases, and one of the important steps is the segmentation of leaf and disease images. The uneven light and leaf overlap in complex situations make segmentation of leaves and diseases quite difficult. Moreover, the significant differences in ratios of leaf and disease pixels results in a challenge in identifying diseases. Methods: To solve the above issues, the residual attention mechanism combined with atrous spatial pyramid pooling and weight compression loss of UNet is proposed, which is named RAAWC-UNet. Firstly, weights compression loss is a method that introduces a modulation factor in front of the cross-entropy loss, aiming at solving the problem of the imbalance between foreground and background pixels. Secondly, the residual network and the convolutional block attention module are combined to form Res_CBAM. It can accurately localize pixels at the edge of the disease and alleviate the vanishing of gradient and semantic information from downsampling. Finally, in the last layer of downsampling, the atrous spatial pyramid pooling is used instead of two convolutions to solve the problem of insufficient spatial context information. Results: The experimental results show that the proposed RAAWC-UNet increases the intersection over union in leaf and disease segmentation by 1.91% and 5.61%, and the pixel accuracy of disease by 4.65% compared with UNet. Discussion: The effectiveness of the proposed method was further verified by the better results in comparison with deep learning methods with similar network architectures.

2.
Front Plant Sci ; 14: 1120724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909428

RESUMO

Introduction: Current detection methods for apple leaf diseases still suffer some challenges, such as the high number of parameters, low detection speed and poor detection performance for small dense spots, which limit the practical applications in agriculture. Therefore, an efficient and accurate model for apple leaf disease detection based on YOLOv5 is proposed and named EADD-YOLO. Methods: In the EADD-YOLO, the lightweight shufflenet inverted residual module is utilized to reconstruct the backbone network, and an efficient feature learning module designed through depthwise convolution is proposed and introduced to the neck network. The aim is to reduce the number of parameters and floating point of operations (FLOPs) during feature extraction and feature fusion, thus increasing the operational efficiency of the network with less impact on detection performance. In addition, the coordinate attention module is embedded into the critical locations of the network to select the critical spot information and suppress useless information, which is to enhance the detection accuracy of diseases with various sizes from different scenes. Furthermore, the SIoU loss replaces CIoU loss as the bounding box regression loss function to improve the accuracy of prediction box localization. Results: The experimental results indicate that the proposed method can achieve the detection performance of 95.5% on the mean average precision and a speed of 625 frames per second (FPS) on the apple leaf disease dataset (ALDD). Compared to the latest research method on the ALDD, the detection accuracy and speed of the proposed method were improved by 12.3% and 596 FPS, respectively. In addition, the parameter quantity and FLOPs of the proposed method were much less than other relevant popular algorithms. Discussion: In summary, the proposed method not only has a satisfactory detection effect, but also has fewer parameters and high calculation efficiency compared with the existing approaches. Therefore, the proposed method provides a high-performance solution for the early diagnosis of apple leaf disease and can be applied in agricultural robots. The code repository is open-sourced at https://github.com/AWANWY/EADD-YOLO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...