Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(11): 2121-2129, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38452368

RESUMO

NH3OH+N5- is a novel energetic material (EM) which has attracted much interest for its promising performances, including high energy density, high density, low sensitivity, and low toxicity. In this study, the initial decomposition mechanism of NH3OH+N5- crystal was investigated under thermal and shock loading by molecular dynamics simulation. First, programmed heating and constant temperature simulations were carried out by molecular dynamics simulation on the basis of density functional theory (DFT-MD). Results indicated that the initial decomposition reactions of NH3OH+N5- could be described by three reactions: proton transfer, ring-opening reaction, and cation decomposition and recombination, and three pathways of ring-opening reaction were found, including the ring-opening of N5-, HN5, and H2N6. The first two reactions are the main pathways that produce N2 molecules. Furthermore, we carried out DFT-MD simulations to study the shock decomposition behaviors of NH3OH+N5-, and three initial steps were proposed: N5-, HN5, and N6 ring-opening. The fewer N5- and HN5 ring-opening reactions were found during the shock simulation, accompanied by a significant change in the N5- bond angle. What's more, the transition states of decomposition reactions were investigated through quantum chemical calculations. The results revealed that the proton transfer reaction exhibits lower activation barriers compared to ring-opening reactions, and proton transfer would accelerate ring-opening reactions. In addition, the ring-opening reaction is the main energy-releasing reaction in the early stages of the decomposition. This work could promote the comprehension of the decomposition mechanism and energy release regularity of N5- ions.

2.
Phys Chem Chem Phys ; 25(31): 20951-20968, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37496442

RESUMO

Reactive molecular dynamics (RMDs) calculations were used to determine, for the first time, the process of thermolysis of the mixed explosives, including 3-nitro-1,2,4-triazol-5-one (NTO) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazoline (HMX). Significantly, this is the first time that a layered model for mixed explosives, which is an extreme innovation of mixed explosive models was adopted. It is shown that a large amount of NO2 in the HMX and OH groups generated by the decomposition of HNO2 has a favorable effect on the thermolysis of NTO, as further validated by a reduction in the activation energy of NTO/HMX. The amount of H2O and N2 in the resulting products increased significantly, but the amount of NH3 changed slightly. The analysis results correspond to the change in chemical bonds. Whenever there is an increase in temperature, the time for the maximum number of clusters to appear is shortened accordingly. In addition, the acidity of NTO has been considered. An independent gradient model based on Hirshfeld partition (IGMH) and atoms in molecule (AIM) analysis of NTO/HMX was implemented. The relatively strong hydrogen bonds indicate that HMX can inhibit the acidity of NTO and is beneficial for the wide application of NTO/HMX-based plastic-bonded explosives (PBXs).

3.
Org Lett ; 25(8): 1290-1294, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36795059

RESUMO

A gem-dinitromethyl group was successfully introduced into the TNBI·2H2O structure (TNBI: 4,4',5,5'-tetranitro-2,2'-bi-1H-imidazole) to obtain 1-(dinitromethyl)-4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole (DNM-TNBI). Benefiting from the transformation of an N-H proton into a gem-dinitromethyl group, the current limitations of TNBI were well solved. More importantly, DNM-TNBI has high density (1.92 g·cm-3, 298 K), good oxygen balance (15.3%), and excellent detonation properties (Dv = 9102 m·s-1, P = 37.6 GPa), suggesting that it has great potential as an oxidizer or a high-performance energetic material.

4.
Medicine (Baltimore) ; 102(5): e32843, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36749271

RESUMO

RATIONALE: Anti- N -methyl- d -aspartate receptor (NMDAR) encephalitis is a rare disease of nervous system, which is mediated by autoimmune mechanisms. The treatment of anti-NMDAR encephalitis includes Immunotherapy, symptomatic and supportive treatment for seizures and psychiatric symptoms. There are many kinds of drugs, so drug treatment management and pharmaceutical care for children are particularly important. At present, there are few reports on pharmaceutical care for children with this disease. Clinical pharmacists participated in the pharmaceutical care of a child with refractory anti-NMDAR encephalitis treated with rituximab, conducted drug treatment management on the dosage, administration method, complications and other aspects of off-label use of rituximab, combined with the children's clinical manifestations, inflammatory indicators, pathogenic detection, blood concentration, liver and kidney functions, drug interactions and other factors. The treatment plan of anti-infective drugs shall be adjusted, and attention shall be paid to whether there are adverse reactions during the treatment. PATIENT CONCERNS: A 4-year-old girl presented with epileptic seizure, intermittent recurrent fever, high inflammatory markers, abnormal psychiatric function/cognitive impairment, language disorder, consciousness disturbance, and movement disorder/involuntary movement. DIAGNOSIS: Refractory anti-NMDAR encephalitis. INTERVENTIONS: The patient was given first-line (3 rounds of methylprednisolone pulse therapy and gamma globulin) and second-line (rituximab) immunotherapy. On the advice of a clinical pharmacist, the patient wasn't given Advanced antibacterial agents (voriconazole, vancomycin) therapy. On the 41st day of admission, the patient's temperature and inflammatory indicators were normal, CD19 + B cells were reduced to 0. OUTCOMES: The patient consciousness level, cognition and orientation were gradually improved, mental disorder was improved, involuntary movement was obviously controlled, no seizure occurred again, and the patient was discharged with stable condition. LESSONS: Clinical pharmacists ensure the safety, effectiveness and economy of patients' medication by carrying out the whole process of individualized drug treatment management and care for patients.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Assistência Farmacêutica , Pré-Escolar , Feminino , Humanos , Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico , Imunoterapia/métodos , Rituximab/uso terapêutico , Convulsões/complicações
5.
Phys Chem Chem Phys ; 24(3): 1520-1531, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34935783

RESUMO

Exploration of the initial reactions of H-free and nitro-free energetic materials could enrich our understanding of the thermal decomposition mechanism of various energetic materials (EMs). In this work, two furoxan compounds, 3,4-dinitrofurazanfuroxan (DNTF) and benzotrifuroxan (BTF), were investigated to shed light on the decay mechanism of furoxan compounds based on the combination of self-consistent charge density functional tight binding and molecular dynamics simulations. The results show that DNTF and BTF decay via a unimolecular mechanism, and the transformation of the furoxan ring into a nitro group is suggested as a novel initial channel. Five initial steps of DNTF thermal decomposition are observed, including NO2 loss and the N(O)-O bond cleavage of the central and peripheral rings. The bond cleavage of peripheral rings dominates the decay at low temperatures, while the central ring opening and C-NO2 dissociation govern the high temperature decay. Besides, NO2, CO and NO fragments are mainly yielded at high temperatures, while CO3N2 is dominant at low temperatures. The three-stage characteristic of the exothermic BTF decay is described under programmed heating conditions for the first time. Four initial steps of BTF thermal decomposition were identified, including furoxan ring opening reactions and the breakage of the 6-membered ring C-C bond. The cleavage of the N(O)-O bond is dominant in the initial step of BTF decomposition under different heating conditions, and the frequency increases with increasing temperature. In addition, the amounts of CON, ON and CO are higher at high temperatures, while C2O2N2 shows an opposite trend. The findings of this work provide deep insights into the complicated sensitivity mechanism of EMs.

6.
Small Methods ; 5(9): e2100649, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34928050

RESUMO

Emerging catalytic host for sulfur is an effective approach to breaking the limits of lithium-sulfur batteries for practical applications. Herein, the hydrangea-shaped Co0.85 Se electrocatalyst with macroporous architecture is synthesized. Besides, to improve the electronic conductivity of Co0.85 Se, some defects (S-doped) are introduced into the structure of crystals. The S-doped Co0.85 Se exhibited an outstanding electrocatalytic effect on lithium polysulfides conversion and can induce and regulate uniform growth of insoluble Li2 S on its surface due to the synergistic adsorption by Se and S. As a result, the S/C cathode achieved a high initial capacity of 1340.6 mAh g-1 at 0.5 C and a stable cycling capacity of 666.6 mAh g-1 at 1 C after 500 cycles by 5 wt% Co0.85 SeS additions. Moreover, high S loading cathodes are designed through in situ synthesis of Co0.85 SeS on flexible carbon cloth (Co0.85 SeS@CC). The porous and open framework of Co0.85 SeS@CC facilitated electrolyte infiltration and accommodated the volume change of sulfur during the charge/discharge process. Taking by these advantages, a high areal capacity of 9.663 mAh cm-2 is achieved at a high sulfur loading of 9.98 mg cm-2 . Even at a high current density of 15 mA cm-2 , a reversible capacity of 603.7 mAh g-1 is maintained at a sulfur loading of 6.52 mg cm-2 . This proposed work provides a feasible approach to high-rate and flexible Li-S batteries.

7.
J Phys Chem A ; 125(48): 10340-10350, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34843232

RESUMO

The difference in the initial decomposition step of pyrazoles and imidazoles was explored using the M062X method for optimization and G4-MP2 and approximated CCSD(T) methods for energies. Laplacian bond order analysis was used to study the effect of the nitro group on the bond strength and predict the bond dissociation energy (BDE) of the ring. Thermochemistry results show that the most possible decay channel of 1H-pyrazole and 3-nitropyrazole is the N2 elimination, while the preferred initial step of 1H-imidazole is the CHN elimination. However, the nitro-nitrite isomerization dominates the decomposition of other nitro derivatives of 1H-pyrazole and 1H-imidazole. As for the formation of HO and HONO, the high energy barrier makes it difficult to take place. Based on the analysis of the lowest energy barrier and the BDE of NO2 loss, it can be concluded that imidazoles are more stable than pyrazoles. This work contributes to revealing the difference in the initial step of energetic isomers and the understanding of the decomposition mechanism of energetic azoles.

8.
J Phys Chem A ; 125(36): 7929-7939, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34470213

RESUMO

In order to resolve the existing discrepancies in the mechanism and key intermediates of oxadiazole thermolysis, the initial decomposition pathways of oxadiazoles have been studied comprehensively using the M062X method for optimization and CBS-QB3 and DLPNO-CCSD(T) methods for energies. The transformation from the furoxan ring to nitro group was suggested as a potential decay channel of furoxan compounds. Results of thermochemistry calculations showed that the preferred decomposition reaction of oxadiazoles is the ring-opening through the cleavage of the O-C or O-N bond. The introduction of the nitro group has little effect on the preferential path of oxadiazole thermal decomposition, but a great impact on the energy barrier. The lowest energy barrier and bond dissociation energy of NO2 loss of azoles were comprehensively studied based on the quantum chemistry calculations. The initial decay steps of 3,4-dinitrofurazanfuroxan and benzotrifuroxan were also studied to give insights into the mechanism of primary stages of thermal decomposition of oxadiazoles.

9.
ACS Appl Mater Interfaces ; 13(20): 23811-23821, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33979521

RESUMO

Lithium-sulfur batteries are attractive because of their high specific capacity and energy density, but issues with the polysulfide dissolution and shuttling intrinsically hinder their wide application. Here, hydroxylate multiwalled carbon nanotubes (MWCNT-OH) were grafted with a supramolecular polymer (heptakis(6-amino-6-deoxy)-ß-cyclodextrin) to form a polysulfide-engulfing net, which was coated on a separator. Such a molecular microarray structure of a polymer can block the polysulfides and have biomimetic cellular behavior for engulfing polysulfides. The cavity (∼6 Å) and functional groups of the supramolecular polymer can provide a dynamic structure for reversible adsorption of polysulfides while the conductive MWCNT-OH ensure fast electron transfer. The batteries with the modified separator exhibited excellent rate capacities (945.5 and 625.4 mA h g-1 at 2 C and 4 C rates, respectively). Especially, the high areal capacities of 5.86 and 7.2 mA h cm-2 achieved at S loadings of 4.5 and 6.0 mg cm-2 and good cycling stability after 200 cycles at 0.1 C can be obtained. This demonstrates a strategy of supramolecular polymer-grafted carbon for dynamic polysulfide adsorption toward advanced Li-S batteries.

10.
ACS Omega ; 4(8): 13408-13417, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31460469

RESUMO

The multimolecular complexes formed between 2,4,6,8,10,12-hexanitro-2,4,6,6,8,10,12-hexaazaisowurtzitane (CL-20) and nitropyrazole compounds were investigated using B3LYP-D3/6-311G(d,p) and B97-3c methods. CL-20 in these complexes was surrounded by methyl, nitro, and amino derivatives of 4-nitropyrazole. The influence of substituents on the molecular electrostatic potential distribution of nitropyrazoles was investigated to figure out the potential electrostatic interaction sites. For the complex, the O···H hydrogen bond was popular in the intermolecular interactions, and dispersion interaction played an essential role, especially in Cx/CL-20 multimolecular complexes. Trigger bond analysis showed that their strength increased upon the formation of intermolecular weak interactions. Nitro group charge calculations stated that the negative charge on almost all nitro groups showed a significant increase. Therefore, the sensitivity of CL-20 seemed to be lower than the original. In addition, the transfer of electron density between CL-20 and nitropyrzoles in complexes was investigated, revealing the influence of weak interactions on the electron density of CL-20.

11.
J Mol Model ; 24(1): 9, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29230541

RESUMO

Eutectic mixtures of 3,4-dinitropyrazole (DNP) and 1-methyl-3,4,5-trinitropyrazole (MTNP) were investigated by theoretical and experimental methods. The mass ratio of DNP and MTNP ranged from 0:100 to 100:0. Melting points of the mixtures were predicted through observing the inflection point of a specific volume vs. temperature in molecular dynamics (MD) simulation. The results are in good agreement with experimental results obtained from the differential scanning calorimeter (DSC) study. The binding energy of a 50/50 DNP/MTNP eutectic mixture is lower than those of other mixtures, in accordance with the common sense that the melting point of materials is linked to the strength of intermolecular interactions. There are definitely hydrogen bonds and dispersion interactions between DNP and MTNP based on the analyses of interaction energy, atom in molecules (AIM), and reduced density gradient (RDG). The eutectic mixture would be encouraged to be used in melt-cast explosives because of the favorable sensitivity to heat and impact, great detonation performances, acceptable vacuum stability and excellent compatibility with high explosives. Graphical abstract The eutectic mixture of DNP and MTNP were investigated through molecular dynamics (MD) simulation and quantum chemistry calculations. The predicted melting points of mixtures are in good agreement with the experimental data. The eutectic mixture shows good stability.

12.
J Mol Model ; 23(12): 353, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29177847

RESUMO

The effects of the molar ratio, temperature, and solvent on the formation of the cocrystal explosive DNP/CL-20 were investigated using molecular dynamics (MD) simulation. The cocrystal structure was predicted through Monte Carlo (MC) simulation and using first-principles methods. The results showed that the DNP/CL-20 cocrystal might be more stable in the molar ratio 1:1 near to 318 K, and the most probable cocrystal crystallizes in the triclinic crystal system with the space group P[Formula: see text]. Cocrystallization was more likely to occur in methanol and ethanol at 308 K as a result of solvent effects. The optimized structure and the reduced density gradient (RDG) of the DNP/CL-20 complex confirmed that the main driving forces for cocrystallization were a series of hydrogen bonds and van der Waals forces. Analyses of the trigger bonds, the charges on the nitro groups, the electrostatic surface potential (ESP), and the free space per molecule in the cocrystal lattice were carried out to further explore their influences on the sensitivity of CL-20. The results indicated that the DNP/CL-20 complex tended to be more stable and insensitive than pure CL-20. Moreover, an investigation of the detonation performance of the DNP/CL-20 cocrystal indicated that it possesses high power. Graphical abstract DNP/CL-20 cocrystal models with different molar ratios were investigated at different temperatures using molecular dynamics (MD) simulation methods. Binding energies and mechanical properties were probed to determine the stability and performance of each cocrystal model. Solvated DNP/CL-20 models were established by adding solvent molecules to the cocrystal surface. The binding energies of the models in various solvents were calculated in order to identify the most suitable solvent and temperature for preparing the cocrystal explosive DNP/CL-20.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...