Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(12): 11574-11582, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008153

RESUMO

Catalytic conversion of cellulose into the novel platform molecule 2,5-hexanedione (HXD) is regarded as one feasible approach for high-value utilization of biomass resources. Here, we reported one efficient way of one-pot conversion of cellulose into HXD with high yield of 80.3% in H2O and tetrahydrofuran (THF) mixture within Al2(SO4)3 combined with Pd/C as a catalyst. In the catalytic reaction system, Al2(SO4)3 could catalyze the conversion of cellulose into 5-hydroxymethylfurfural (HMF), and Pd/C combined with Al2(SO4)3 could catalyze the hydrogenolysis of HMF into furanic intermediates such as 5-methylfurfuryl alcohol and 2,5-dimethylfuran (DMF) without causing over-hydrogenation of these furanic intermediates. These furanic intermediates were finally transformed into HXD catalyzed by Al2(SO4)3. Besides, the H2O/THF ratio could significantly influence the reactivity of the hydrolytic furanic ring-opening of the furanic intermediates. The catalytic system also showed excellent performance on the conversion of other carbohydrates (glucose and sucrose) into HXD.

2.
Sci Total Environ ; 881: 163315, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37028657

RESUMO

Biochar adsorption materials have a good removal effect on ammonia nitrogen in piggery biogas slurry. However, the cost of biochar adsorption material is still high. If these materials can be recycled several times, the cost can be significantly reduced. Therefore, this paper investigated a new process of biochar adsorption material (C@Mg-P) pyrolysis cycle for reducing ammonia nitrogen in piggery biogas slurry. The effects of pyrolysis process conditions (pyrolysis temperature and pyrolysis time) and number of recycling times on reducing ammonia nitrogen in biogas slurry by C@Mg-P were studied, a preliminary investigation on the reaction mechanism of C@Mg-P for reducing ammonia nitrogen in biogas slurry was conducted, and the economic feasibility of the pyrolysis recycling process was analyzed. It was found that the NH3-N elimination efficiency by C@Mg-P was 79.16 % under the optimal conditions of 0.5 h and 100 °C. Second, C@Mg-P removed 70.31 % NH3-N after recycling 10 times. Chemical precipitation, ion exchange, physical adsorption and electrostatic attraction were the potential reaction mechanisms for NH3-N reduction by C@Mg-P. Moreover, C@Mg-P had a good decolorization effect on piggery biogas slurry with a 72.56 % decolorization rate. Compared with the non-pyrolyzed recycling process, the proposed process saved 80 % of the cost, thus representing an economically possible approach for pig manure biochar application in wastewater denitrification treatment.


Assuntos
Amônia , Esterco , Animais , Suínos , Amônia/análise , Biocombustíveis , Adsorção , Pirólise , Carvão Vegetal , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...