Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(25): e2400962, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38637999

RESUMO

Tin-lead (Sn-Pb) mixed perovskite with a narrow bandgap is an ideal candidate for single-junction solar cells approaching the Shockley-Queisser limit. However, due to the easy oxidation of Sn2+, the efficiency and stability of Sn-Pb mixed perovskite solar cells (PSCs) still lag far behind that of Pb-based solar cells. Herein, highly efficient and stable FA0.5MA0.5Pb0.5Sn0.5I0.47Br0.03 compositional PSCs are achieved by introducing an appropriate amount of multifunctional Tin (II) oxalate (SnC2O4). SnC2O4 with compensative Sn2+ and reductive oxalate group C2O4 2- effectively passivates the cation and anion defects simultaneously, thereby leading to more n-type perovskite films. Benefitting from the energy level alignment and the suppression of bulk nonradiative recombination, the Sn-Pb mixed perovskite solar cell treated with SnC2O4 achieves a power conversion efficiency of 21.43%. More importantly, chemically reductive C2O4 2- effectively suppresses the notorious oxidation of Sn2+, leading to significant enhancement in stability. Particularly, it dramatically improves light stability.

2.
Inorg Chem ; 61(41): 16239-16247, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36179151

RESUMO

Isoniazid is an antibiotic primarily used in clinical treatment of tuberculosis, but excessive usage can lead to serious consequences such as hepatotoxicity, neurotoxicity, and even coma and death. Therefore, it is critical to exploit a quick, facile, and acute way for isoniazid analysis. In this work, we have demonstrated an efficient electrospinning-carbonation-wet chemistry reaction-calcination process to fabricate CuO/NiO nanotubes (NTs) as a promising nanozyme for peroxidase (POD) mimicking. In virtue of the distinct tubular structure and synergy between CuO and NiO from the mechanisms of both electron transfer and hydroxyl radical generation, a remarkably improved catalytic activity is realized for the CuO/NiO NTs compared with bare CuO and NiO samples. According to the admirable POD-like property, a rapid colorimetric detection for isoniazid is accomplished with a detection limit of 0.4 µM (S/N = 3) and favorable selectivity. In addition, the sensing capability of isoniazid in a real sample is also investigated with satisfactory results. This work offers a novel tactic to fabricate high-performance nanozymes with efficient isoniazid sensing capabilities to address challenges in disease treatment efficacy and public safety monitoring.


Assuntos
Isoniazida , Peroxidase , Antibacterianos , Biomimética , Cobre , Radical Hidroxila , Oxirredutases , Peroxidase/química , Peroxidases
3.
Nanoscale ; 13(20): 9112-9146, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34008677

RESUMO

One-dimensional (1D) electrospun nanomaterials have attracted significant attention due to their unique structures and outstanding chemical and physical properties such as large specific surface area, distinct electronic and mass transport, and mechanical flexibility. Over the past years, the integration of metal sulfides with electrospun nanomaterials has emerged as an exciting research topic owing to the synergistic effects between the two components, leading to novel and interesting properties in energy, optics and catalysis research fields for example. In this review, we focus on the recent development of the preparation of electrospun nanomaterials integrated with functional metal sulfides with distinct nanostructures. These functional materials have been prepared via two efficient strategies, namely direct electrospinning and post-synthesis modification of electrospun nanomaterials. In this review, we systematically present the chemical and physical properties of the electrospun nanomaterials integrated with metal sulfides and their application in electronic and optoelectronic devices, sensing, catalysis, energy conversion and storage, thermal shielding, adsorption and separation, and biomedical technology. Additionally, challenges and further research opportunities in the preparation and application of these novel functional materials are also discussed.

4.
PeerJ ; 8: e8726, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195053

RESUMO

BACKGROUND: Saline-sodic soils are widely distributed in arid and semi-arid regions around the world. High levels of salt and sodium inhibit the growth and development of crops. However, there has been limited reports on both osmotic potential in soil solutions (OPss) and characteristics of Na+ and K+ absorption in rice in saline-sodic soils under various amendments application. METHODS: A field experiment was conducted between 2009 and 2017 to analyze the influence of amendments addition to saline-sodic soils on rice growth and yield. Rice was grown in the soil with no amendment (CK), with desulfurization gypsum (DG), with sandy soil (SS), with farmyard manure (FM) and with the mixture of above amendments (M). The osmotic potential in soil solution, selective absorption of K+ over Na+ (SA), selective transport of K+ over Na+ (ST), the distribution of K+ and Na+and yield components in rice plants were investigated. RESULTS: The results indicated that amendments application have positive effects on rice yield. The M treatment was the best among the tested amendments with the highest rice grain yield. M treatment increased the OPss values significantly to relieve the inhibition of the water uptake by plants. Additionally, the M treatment significantly enhanced K+ concentration and impeded Na+ accumulation in shoots. SA values were reduced while ST values were increased for all amendments. In conclusion, a mixture of desulfurization gypsum, sandy soil and farmyard manure was the best treatment for the improvement of rice growth and yield in the Songnen Plain, northeast China.

5.
Adv Sci (Weinh) ; 7(2): 1901833, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993285

RESUMO

Developing high-performance, low-cost, and robust bifunctional electrocatalysts for overall water splitting is extremely indispensable and challenging. It is a promising strategy to couple highly active precious metals with transition metals as efficient electrocatalysts, which can not only effectively reduce the cost of the preparation procedure, but also greatly improve the performance of catalysts through a synergistic effect. Herein, Ru and Ni nanoparticles embedded within nitrogen-doped carbon nanofibers (RuNi-NCNFs) are synthesized via a simple electrospinning technology with a subsequent carbonization process. The as-formed RuNi-NCNFs represent excellent Pt-like electrocatalytic activity for the hydrogen evolution reaction (HER) in both alkaline and acidic conditions. Furthermore, the RuNi-NCNFs also exhibit an outstanding oxygen evolution reaction (OER) activity with an overpotential of 290 mV to achieve a current density of 10 mA cm-2 in alkaline electrolyte. Strikingly, owing to both the HER and OER performance, an electrolyzer with RuNi-NCNFs as both the anode and cathode catalysts requires only a cell voltage of 1.564 V to drive a current density of 10 mA cm-2 in an alkaline medium, which is lower than the benchmark of Pt/C||RuO2 electrodes. This study opens a novel avenue toward the exploration of high efficient but low-cost electrocatalysts for overall water splitting.

6.
J Colloid Interface Sci ; 528: 410-418, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29879618

RESUMO

Synergistic effects play a crucial role in improving the catalytic activity of enzyme-like reactions. The preparation of hybrid nanomaterials for enzyme mimicking that display synergistic enhanced catalytic activity remains a formidable challenge. Titanium dioxide (TiO2)/molybdenum disulfide (MoS2) core-shell hybrid nanofibers were synthesized as efficient peroxidase mimics via a three-step approach involving electrospinning, calcination, and hydrothermal treatment. The resulting TiO2/MoS2 hybrid nanofibers exhibited synergistically enhanced peroxidase-like catalytic activity relative to the TiO2 nanofibers or MoS2 nanosheets alone. Based on the high peroxidase-like activity of the TiO2/MoS2 hybrid nanofibers, a simple colorimetric approach for the detection of l-glutathione (GSH) was developed, with a detection limit as low as 0.05 µM. This study provides a simple and sensitive sensing platform for the detection of GSH, with prospective applications in colorimetric sensing, environmental monitoring, and medical diagnosis.


Assuntos
Colorimetria/métodos , Dissulfetos/química , Glutationa/análise , Molibdênio/química , Nanofibras/química , Titânio/química , Materiais Biomiméticos/química , Limite de Detecção , Nanofibras/ultraestrutura , Peroxidase/química
7.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 10): o2554, 2009 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-21577995

RESUMO

The mol-ecule of the title compound, C(15)H(13)ClN(2)O(2), adopts an E geometry about the C=N bond. The dihedral angle between the two benzene rings is 62.7 (2)°. In the crystal structure, mol-ecules are linked through inter-molecular N-H⋯O hydrogen bonds, forming chains running along the c axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...