Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 29(12): 3913-3924, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37311691

RESUMO

AIMS: The amplitude of low-frequency fluctuations (ALFF) of resting-state functional MRI signals is a reliable neuroimaging measure of spontaneous brain activity. Inconsistent ALFF alterations have been reported in major depressive disorder (MDD) possibly due to clinical heterogeneity. This study was designed to investigate clinically sensitive and insensitive genes associated with ALFF alterations in MDD and the potential mechanisms. METHODS: Transcription-neuroimaging association analyses of case-control ALFF differences from two independent neuroimaging datasets with gene expression data from Allen Human Brain Atlas were performed to identify the two gene sets. Various enrichment analyses were conducted to characterize their preference in biological functions, cell types, temporal stages, and shared effects with other psychiatric disorders. RESULTS: Compared with controls, first-episode and drug-naïve patients showed more extensive ALFF alterations than patients with varied clinical features. We identified 903 clinically sensitive genes and 633 clinically insensitive genes, and the former was enriched for genes with down-regulated expression in the cerebral cortex of MDD patients. Despite shared functions of cell communication, signaling, and transport, clinically sensitive genes were enriched for cell differentiation and development whereas clinically insensitive genes were for ion transport and synaptic signaling. Clinically sensitive genes showed enrichment for microglia and macrophage from childhood to young adulthood in contrast to clinically insensitive genes for neurons before early infancy. Clinically sensitive genes (15.2%) were less likely correlated with ALFF alterations in schizophrenia than clinically insensitive genes (66.8%), and both were not relevant to bipolar disorder and adult attention deficit and hyperactivity disorder based on a third independent neuroimaging dataset. CONCLUSIONS: Present results provide novel insights into the molecular mechanisms of spontaneous brain activity changes in clinically different patients with MDD.


Assuntos
Transtorno Depressivo Maior , Adulto , Humanos , Adulto Jovem , Criança , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Córtex Cerebral , Neuroimagem , Mapeamento Encefálico
2.
Front Aging Neurosci ; 15: 1129051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091519

RESUMO

Background: Alzheimer's disease (AD) is one of the most severe neurodegenerative diseases leading to dementia in the elderly. Cerebral atrophy and hypoperfusion are two important pathophysiological characteristics. However, it is still unknown about the area-specific causal pathways between regional gray matter atrophy, cerebral hypoperfusion, and cognitive impairment in AD patients. Method: Forty-two qualified AD patients and 49 healthy controls (HC) were recruited in this study. First, we explored voxel-wise inter-group differences in gray matter volume (GMV) and arterial spin labeling (ASL) -derived cerebral blood flow (CBF). Then we explored the voxel-wise associations between GMV and Mini-Mental State Examination (MMSE) score, GMV and CBF, and CBF and MMSE to identify brain targets contributing to cognitive impairment in AD patients. Finally, a mediation analysis was applied to test the causal pathways among atrophied GMV, hypoperfusion, and cognitive impairment in AD. Results: Voxel-wise permutation test identified that the left middle temporal gyrus (MTG) had both decreased GMV and CBF in the AD. Moreover, the GMV of this region was positively correlated with MMSE and its CBF, and CBF of this region was also positively correlated with MMSE in AD (p < 0.05, corrected). Finally, mediation analysis revealed that gray matter atrophy of left MTG drives cognitive impairment of AD via the mediation of CBF (proportion of mediation = 55.82%, ß = 0.242, 95% confidence interval by bias-corrected and accelerated bootstrap: 0.082 to 0.530). Conclusion: Our findings indicated suggested that left MTG is an important hub linking gray matter atrophy, hypoperfusion, and cognitive impairment for AD, and might be a potential treatment target for AD.

3.
Neuropsychopharmacology ; 48(3): 518-528, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36253546

RESUMO

Recent studies have shown that major depressive disorder (MDD) is accompanied by alterations in functional and structural network gradients. However, whether changes are present in the cortical morphometric similarity (MS) network gradient, and the relationship between alterations of the gradient and gene expression remains largely unknown. In this study, the MS network was constructed, and its gradient was calculated in 71 patients with first-episode, treatment-naive MDD, and 69 demographically matched healthy controls. Between-group comparisons were performed to investigate abnormalities in the MS network gradient, and partial least squares regression analysis was conducted to explore the association between gene expression profiles and MS network gradient-based alternations in MDD. We found that the gradient was primarily significantly decreased in sensorimotor regions in patients with MDD compared with healthy controls, and increased in visual-related regions. In addition, the altered principal MS network gradient in the left postcentral cortex and right lingual cortex exhibited significant correlations with symptom severity. The abnormal gradient pattern was spatially correlated with the brain-wide expression of genes enriched for neurobiologically relevant pathways, downregulated in the MDD postmortem brain, and preferentially expressed in different cell types and cortical layers. These results demonstrated alterations of the principal MS network gradient in MDD and suggested the molecular mechanisms for structural alternations underlying MDD.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Imageamento por Ressonância Magnética/métodos , Encéfalo , Córtex Cerebral/diagnóstico por imagem , Mapeamento Encefálico
4.
Schizophrenia (Heidelb) ; 8(1): 93, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347874

RESUMO

Neuroimaging studies have shown that schizophrenia is associated with disruption of resting-state local functional connectivity. However, these findings vary considerably, which hampers our understanding of the underlying pathophysiological mechanisms of schizophrenia. Here, we performed an updated and extended meta-analysis to identify the most consistent changes of local functional connectivity measured by regional homogeneity (ReHo) in schizophrenia. Specifically, a systematic search of ReHo studies in patients with schizophrenia in PubMed, Embase, and Web of Science identified 18 studies (20 datasets), including 652 patients and 596 healthy controls. In addition, we included three whole-brain statistical maps of ReHo differences calculated based on independent datasets (163 patients and 194 controls). A voxel-wise meta-analysis was then conducted to investigate ReHo alterations and their relationship with clinical characteristics using the newly developed seed-based d mapping with permutation of subject images (SDM-PSI) meta-analytic approach. Compared with healthy controls, patients with schizophrenia showed significantly higher ReHo in the bilateral medial superior frontal gyrus, while lower ReHo in the bilateral postcentral gyrus, right precentral gyrus, and right middle occipital gyrus. The following sensitivity analyses including jackknife analysis, subgroup analysis, heterogeneity test, and publication bias test demonstrated that our results were robust and highly reliable. Meta-regression analysis revealed that illness duration was negatively correlated with ReHo abnormalities in the right precentral/postcentral gyrus. This comprehensive meta-analysis not only identified consistent and reliably aberrant local functional connectivity in schizophrenia but also helped to further deepen our understanding of its pathophysiology.

5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(5): 534-536, 2022 May 10.
Artigo em Chinês | MEDLINE | ID: mdl-35598273

RESUMO

OBJECTIVE: Utilize high-resolution chromosome analysis and microarray detection to determine the genetic etiology of infertility of a 32-year old female patient. METHODS: The peripheral blood of the patient was cultured for high-resolution chromosome G and C banding karyotype analysis, and then 750K SNP-Array chip detection was performed. RESULTS: Karyotype analysis results showed that the patient's karyotype was 45,XX,-13 [7]/46,XX,r(13) (p13q34) [185]/46,XX,dic r(13;13)(p13q34;p13q34) [14]/ 47,XX,+der(13;13;13;13) (p13q34;p13q34;p13q34; p13q34), dic r(13;13) [1]/ 46,XX [3]. The microarray results showed that the patient had a 3.3 Mb deletion in the 13q34 segment of chromosome 13, which may be related to infertility. CONCLUSION: Infertility of the patient reported in this article may be related to the deletion of chromosome segment (13q34-qter).


Assuntos
Transtornos Cromossômicos , Infertilidade Feminina , Cromossomos em Anel , Adulto , Feminino , Humanos , Bandeamento Cromossômico , Deleção Cromossômica , Transtornos Cromossômicos/genética , Infertilidade Feminina/genética
6.
Brain Imaging Behav ; 16(4): 1657-1670, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35212890

RESUMO

Previous studies identified some genetic loci of emotion, but few focused on human emotion-related gene expression. In this study, the facial expression recognition (FER) task-based high-resolution fMRI data of 203 subjects in the Human Connectome Project (HCP) and expression data of the six healthy human postmortem brain tissues in the Allen Human Brain Atlas (AHBA) were used to conduct a transcriptome-neuroimaging spatial association analysis. Finally, 371 genes were identified to be significantly associated with FER-related brain activations. Enrichment analyses revealed that FER-related genes were mainly expressed in the brain, especially neurons, and might be related to cell junction organization, synaptic functions, and nervous system development regulation, indicating that FER was a complex polygenetic biological process involving multiple pathways. Moreover, these genes exhibited higher enrichment for psychiatric diseases with heavy emotion impairments. This study provided new insight into understanding the FER-related biological mechanisms and might be helpful to explore treatment methods for emotion-related psychiatric disorders.


Assuntos
Reconhecimento Facial , Encéfalo/diagnóstico por imagem , Emoções/fisiologia , Expressão Facial , Reconhecimento Facial/fisiologia , Expressão Gênica , Humanos , Imageamento por Ressonância Magnética , Testes Neuropsicológicos
7.
Hum Brain Mapp ; 42(7): 2236-2249, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33570215

RESUMO

Resting-state functional connectivity in the human brain is heritable, and previous studies have investigated the genetic basis underlying functional connectivity. However, at present, the molecular mechanisms associated with functional network centrality are still largely unknown. In this study, functional networks were constructed, and the graph-theory method was employed to calculate network centrality in 100 healthy young adults from the Human Connectome Project. Specifically, functional connectivity strength (FCS), also known as the "degree centrality" of weighted networks, is calculated to measure functional network centrality. A multivariate technique of partial least squares regression (PLSR) was then conducted to identify genes whose spatial expression profiles best predicted the FCS distribution. We found that FCS spatial distribution was significantly positively correlated with the expression of genes defined by the first PLSR component. The FCS-related genes we identified were significantly enriched for ion channels, axon guidance, and synaptic transmission. Moreover, FCS-related genes were preferentially expressed in cortical neurons and young adulthood and were enriched in numerous neurodegenerative and neuropsychiatric disorders. Furthermore, a series of validation and robustness analyses demonstrated the reliability of the results. Overall, our results suggest that the spatial distribution of FCS is modulated by the expression of a set of genes associated with ion channels, axon guidance, and synaptic transmission.


Assuntos
Córtex Cerebral/fisiologia , Conectoma , Expressão Gênica/fisiologia , Rede Nervosa/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...