Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Ther Med ; 26(2): 374, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37415837

RESUMO

Natriuretic peptides, which are produced by the heart, bind to natriuretic peptide receptor A (NPR1 encoded by natriuretic peptide receptor 1 gene) and cause vasodilation and natriuresis. Thus, they serve an important role in regulating blood pressure. In the present study, microinjection of CRISPR associated protein 9/single guide RNA into fertilized C57BL/6N mouse eggs was performed to generate filial generation zero (F0) Npr1 knockout homozygous mice (Npr1-/-). F0 mice mated with wild-type (WT) mice to obtain F1 Npr1 knockout heterozygous mice with stable heredity (Npr1+/-). F1 self-hybridization was used to expand the population of heterozygous mice (Npr1+/-). The present study performed echocardiography to investigate the impact of NPR1 gene knockdown on cardiac function. Compared with those in the WT group (C57BL/6N male mice), the left ventricular ejection fraction, myocardial contractility and renal sodium and potassium excretion and creatinine-clearance rates were decreased, indicating that Npr1 knockdown induced cardiac and renal dysfunction. In addition, expression of serum glucocorticoid-regulated kinase 1 (SGK1) increased significantly compared with that in WT mice. However, glucocorticoids (dexamethasone) upregulated NPR1 and inhibited SGK1 and alleviated cardiac and renal dysfunction caused by Npr1 gene heterozygosity. SGK1 inhibitor GSK650394 ameliorate cardiorenal syndrome by suppressing SGK1. Briefly, glucocorticoids inhibited SGK1 by upregulating NPR1, thereby ameliorating cardiorenal impairment caused by Npr1 gene heterozygosity. The present findings provided novel insight into the understanding of cardiorenal syndrome and suggested that glucocorticoids targeting the NPR1/SGK1 pathway may be a potential therapeutic target to treat cardiorenal syndrome.

2.
Front Oncol ; 12: 877657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646712

RESUMO

Neural infiltration is a critical component of the tumor microenvironment; however, owing to technological limitations, its role in hepatocellular cancer remains obscure. Herein, we obtained the RNA-sequencing data of liver hepatocellular carcinoma (LIHC) from The Cancer Genome Atlas database and performed a series of bioinformatic analyses, including prognosis analysis, pathway enrichment, and immune analysis, using the R software packages, Consensus Cluster Plus and Limma. LIHC could be divided into two subtypes according to the expression of neural-related genes (NRGs); moreover, there are statistic differences in the prognosis, stage, and immune regulation between the two subtypes. The prognostic model showed that high expression of NRGs correlated with a poor survival prognosis (P<0.05). Further, CHRNE, GFRA2, GFRA3, and GRIN2D was significantly correlated with LIHC clinical prognosis, clinical stage, immune infiltration, immune response, and vital signaling pathways. There was nerve-cancer crosstalk in LIHC. A reclassification of LIHC based on NRG expression may prove beneficial to clinical practice. CHRNE, GFRA2, GFRA3, and GRIN2D may serve as potential biomarker for liver cancer prognosis or immune response.

3.
Cancer Cell Int ; 21(1): 438, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34419048

RESUMO

BACKGROUND: Gastric cancer is one of the most common malignant tumors of the digestive system. However, its targeted therapy develops at a slow pace. Thus, exploring the mechanisms of the malignant behavior of gastric cancer cells is crucial to exploit its treatment. Mammalian never-in-mitosis A (NIMA)-related kinases (NEKs) are considered to play a significant role in cancer cell proliferation. However, no study has reported on NIMA family proteins in gastric cancer. METHODS: Bioinformatics analysis was employed to clarify the expression patterns of NEK1-NEK11 and their effects on prognosis. The effects of NEK7 on immune infiltration and NEK7 related pathways were also analyzed. At the cell level, 5-ethynyl-2-deoxyuridine, cell cycle, and Cell Counting Kit-8 assays were utilized to clarify the effect of NEK7 on gastric cancer cell proliferation. A mouse subcutaneous model revealed the regulating effect of NEK7 on gastric cancer cell proliferation in vivo. RESULTS: Bioinformatics analysis revealed that NEK7 is upregulated in gastric cancer and is related to poor prognosis. NEK7 is also related to T-stage, which is closely associated with cell proliferation. Further analysis showed that NEK7 was correlated with infiltration of multiple immune cells as well as gastric cancer-related pathways. Cell experiments indicated the promoting effect of NEK7 on cell proliferation, while the absence of NEK7 could lead to inhibition of gastric cancer proliferation and G1/S arrest. CONCLUSION: NEK7 exerts a regulatory effect on cell proliferation and is closely related to tumor immune infiltration.

4.
World J Gastroenterol ; 27(24): 3609-3629, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34239273

RESUMO

BACKGROUND: Gut microbiota and its metabolites may be involved in the pathogenesis of inflammatory bowel disease. Several clinical studies have recently shown that patients with ulcerative colitis (UC) have altered profiles of fecal bile acids (BAs). It was observed that BA receptors Takeda G-protein-coupled receptor 5 (TGR5) and vitamin D receptor (VDR) participate in intestinal inflammatory responses by regulating NF-ĸB signaling. We hypothesized that altered profiles of fecal BAs might be correlated with gut microbiota and inflammatory responses in patients with UC. AIM: To investigate the changes in fecal BAs and analyze the relationship of BAs with gut microbiota and inflammation in patients with UC. METHODS: The present study used 16S rDNA sequencing technology to detect the differences in the intestinal flora between UC patients and healthy controls (HCs). Fecal BAs were measured by targeted metabolomics approaches. Mucosal TGR5 and VDR expression was analyzed using immunohistochemistry, and serum inflammatory cytokine levels were detected by ELISA. RESULTS: Thirty-two UC patients and twenty-three HCs were enrolled in this study. It was found that the diversity of gut microbiota in UC patients was reduced compared with that in HCs. Firmicutes, Clostridium IV, Butyricicoccus, Clostridium XlVa, Faecalibacterium, and Roseburia were significantly decreased in patients with UC (P = 3.75E-05, P = 8.28E-07, P = 0.0002, P = 0.003, P = 0.0003, and P = 0.0004, respectively). Proteobacteria, Escherichia, Enterococcus, Klebsiella, and Streptococcus were significantly enriched in the UC group (P = 2.99E-09, P = 3.63E-05, P = 8.59E-05, P = 0.003, and P = 0.016, respectively). The concentrations of fecal secondary BAs, such as lithocholic acid, deoxycholic acid, glycodeoxycholic acid, glycolithocholic acid, and taurolithocholate, in UC patients were significantly lower than those in HCs (P = 8.1E-08, P = 1.2E-07, P = 3.5E-04, P = 1.9E-03, and P = 1.8E-02, respectively) and were positively correlated with Butyricicoccus, Roseburia, Clostridium IV, Faecalibacterium, and Clostridium XlVb (P < 0.01). The concentrations of primary BAs, such as taurocholic acid, cholic acid, taurochenodeoxycholate, and glycochenodeoxycholate, in UC patients were significantly higher than those in HCs (P = 5.3E-03, P = 4E-02, P = 0.042, and P = 0.045, respectively) and were positively related to Enterococcus, Klebsiella, Streptococcus, Lactobacillus, and pro-inflammatory cytokines (P < 0.01). The expression of TGR5 was significantly elevated in UC patients (0.019 ± 0.013 vs 0.006 ± 0.003, P = 0.0003). VDR expression in colonic mucosal specimens was significantly decreased in UC patients (0.011 ± 0.007 vs 0.016 ± 0.004, P = 0.033). CONCLUSION: Fecal BA profiles are closely related to the gut microbiota and serum inflammatory cytokines. Dysregulation of the gut microbiota and altered constitution of fecal BAs may participate in regulating inflammatory responses via the BA receptors TGR5 and VDR.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Ácidos e Sais Biliares , Fezes , Humanos , Intestinos
5.
Ren Fail ; 41(1): 698-703, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31352865

RESUMO

Background: Several studies have shown that non-renal factors such as corticosteroids may increase plasma cystatin C levels without affecting kidney function. However, the mechanisms underlying this are unclear. We hypothesized that corticosteroids may increase cystatin C levels in the plasma by promoting its production in tissues. In the present study, we aimed to test our hypothesis in rats by investigating the effect of corticosteroids on cystatin C production in tissues and the glomerular filtration rate (GFR), as measured by the gold standard method (i.e., inulin clearance). Results: Dexamethasone treatment was associated with much higher concentrations of cystatin C in all organ tissue homogenates tested. Dexamethasone increased plasma cystatin C levels in rats, without any decrease in renal inulin clearance. The impact of dexamethasone on plasma and organ tissue cystatin C levels was abolished by RU486, indicating the effect was glucocorticoid receptor-mediated. Conclusions: Our study provides direct evidence that corticosteroids may increase cystatin C levels in the plasma by promoting its production, without any decrease in GFR.


Assuntos
Corticosteroides/farmacologia , Cistatina C/sangue , Dexametasona/farmacologia , Animais , Taxa de Filtração Glomerular/efeitos dos fármacos , Inulina/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...