Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(23): eadm9631, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838154

RESUMO

Short-wavelength infrared (SWIR) light detection plays a key role in modern technologies. Emerging solution-processed organic semiconductors are promising for cost-effective, flexible, and large-area SWIR organic photodiodes (OPDs). However, the spectral responsivity (R) and specific detectivity (D*) of SWIR OPDs are restricted by insufficient exciton dissociation and high noise current. In this work, we synthesized an SWIR small molecule with a spectral coverage of 0.3 to 1.3 micrometers peaking at 1100 nanometers. The photodiode, with optimized exciton dissociation, charge injection, and SWIR transmittance, achieves a record high R of 0.53 ampere per watt and D* of 1.71 × 1013 Jones at 1110 nanometers under zero bias. The D* at 1 to 1.2 micrometers surpasses that of the uncooled commercial InGaAs photodiode. Furthermore, large-area semitransparent all-organic upconversion devices integrating the SWIR photodiode realized static and dynamic SWIR-to-visible imaging, along with excellent upconversion efficiency and spatial resolution. This work provides alternative insights for developing sensitive organic SWIR detection.

2.
Chaos ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38598677

RESUMO

In this paper, the dynamical properties of soliton interactions in the focusing Gardner equation are analyzed by the conventional two-soliton solution and its degenerate cases. Using the asymptotic expressions of interacting solitons, it is shown that the soliton polarities depend on the signs of phase parameters, and that the degenerate solitons in the mixed and rational forms have variable velocities with the time dependence of attenuation. By means of extreme value analysis, the interaction points in different interaction scenarios are presented with exact determination of positions and occurrence times of high transient waves generated in the bipolar soliton interactions. Next, with all types of two-soliton interaction scenarios considered, the interactions of two solitons with different polarities are quantitatively shown to have a greater contribution to the skewness and kurtosis than those with the same polarity. Specifically, the ratios of spectral parameters (or soliton amplitudes) are determined when the bipolar soliton interactions have the strongest effects on the skewness and kurtosis. In addition, numerical simulations are conducted to examine the properties of multi-soliton interactions and their influence on higher statistical moments, especially confirming the emergence of the soliton interactions described by the mixed and rational solutions in a denser soliton ensemble.

3.
RSC Adv ; 14(16): 10969-10977, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577434

RESUMO

This study explores the potential of regioisomeric quinoidal-resonance π-spacers in designing near-infrared (NIR) non-fullerene acceptors (NFAs) for high-performance organic solar cell devices. Adopting thienothiazole as the π-spacer, two new isomeric A-Q-D-Q-A NFAs, TzN-S and TzS-S, are designed and synthesized. Both NFAs demonstrate a broad spectral response extended to the NIR region. However, they exhibit different photovoltaic properties when they were mixed with the PCE10 donor to fabricate respective solar cells. The optimal device of TzS-S achieves a PCE of 10.75%, much higher than that of TzN-S based ones (6.13%). The more favorable energetic offset and better molecular packing contribute to the better charge generation and transport, which explains the relative superiority of TzS-S NFA. This work sheds new light on the regioisomeric effect of component materials for optoelectronic applications.

4.
Adv Mater ; 36(26): e2312101, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38544433

RESUMO

Restricted by the energy-gap law, state-of-the-art organic solar cells (OSCs) exhibit relatively low open-circuit voltage (VOC) because of large nonradiative energy losses (ΔEnonrad). Moreover, the trade-off between VOC and external quantum efficiency (EQE) of OSCs is more distinctive; the power conversion efficiencies (PCEs) of OSCs are still <15% with VOCs of >1.0 V. Herein, the electronic properties and aggregation behaviors of non-fullerene acceptors (NFAs) are carefully considered and then a new NFA (Z19) is delicately designed by simultaneously introducing alkoxy and phenyl-substituted alkyl chains to the conjugated backbone. Z19 exhibits a hypochromatic-shifted absorption spectrum, high-lying lowest unoccupied molecular orbital energy level and ordered 2D packing mode. The D18:Z19-based blend film exhibits favorable phase separation with face-on dominated molecular orientation, facilitating charge transport properties. Consequently, D18:Z19 binary devices afford an exciting PCE of 19.2% with a high VOC of 1.002 V, surpassing Y6-2O-based devices. The former is the highest PCE reported to date for OSCs with VOCs of >1.0 V. Moreover, the ΔEnonrad of Z19- (0.200 eV) and Y6-2O-based (0.155 eV) devices are lower than that of Y6-based (0.239 eV) devices. Indications are that the design of such NFA, considering the energy-gap law, could promote a new breakthrough in OSCs.

5.
Phys Rev E ; 109(1-1): 014204, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366491

RESUMO

Integrable turbulence, as an irregular behavior in dynamic systems, has attracted a lot of attention in integrable and Hamiltonian systems. This article focuses on the studies of integrable turbulence phenomena of the Kundu-Eckhaus (KE) equation as well as the generation of rogue waves from the numerical and statistical viewpoints. First, via the Fourier collocation method, we obtain the spectral portraits of different analytical solutions. Second, we perform the numerical simulation on the KE equation under the initial condition of a plane wave with random noise to simulate the chaotic wave fields. Then, we analyze the influences of standard deviation and correlation length on the integrable turbulence and amplitude of wave field. It's found that both of the two parameters have positive effects on the generation probability of rogue wave caused by the interactions. But only the variation of standard deviation can lead to the transition from the breather turbulence to soliton turbulence. Furthermore, by analyzing the effects of additional higher-order nonlinear terms on the chaotic wave field, we find that those two higher-order nonlinear effects in the KE equation can lead to a larger amplitude of the chaotic wave field and a higher probability of generating rouge waves compared with the NLS equation.

6.
Angew Chem Int Ed Engl ; 63(3): e202313791, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38050643

RESUMO

The blend nanomorphology of electron-donor (D) and -acceptor (A) materials is of vital importance to achieving highly efficient organic solar cells. Exogenous additives especially aromatic additives are always needed to further optimize the nanomorphology of blend films, which is hardly compatible with industrial manufacture. Herein, we proposed a unique approach to meticulously modulate the aggregation behavior of NFAs in both crystal and thin film nanomorphology via self-regulation effect. Nonfullerene acceptor Z9 was designed and synthesized by tethering phenyl groups on the inner side chains of the Y6 backbone. Compared with Y6, the tethered phenyl groups participated in the molecular aggregation via the π-π stacking of phenyl-phenyl and phenyl-2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC-2F) groups, which induced 3D charge transport with phenyl-mediated super-exchange electron coupling. Moreover, ordered molecular packing with suitable phase separation was observed in Z9-based blend films. High power conversion efficiencies (PCEs) of 19.0 % (certified PCE of 18.6 %) for Z9-based devices were achieved without additives, indicating the great potential of the self-regulation strategy in NFA design.

7.
Nat Commun ; 14(1): 5079, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604923

RESUMO

The nonradiative energy loss (∆Enr) is a critical factor to limit the efficiency of organic solar cells. Generally, strong electron-phonon coupling induced by molecular motion generates fast nonradiative decay and causes high ∆Enr. How to restrict molecular motion and achieve a low ∆Enr is a sticking point. Herein, the free volume ratio (FVR) is proposed as an indicator to evaluate molecular motion, providing new molecular design rationale to suppress nonradiative decay. Theoretical and experimental results indicate proper proliferation of alkyl side-chain can decrease FVR and restrict molecular motion, leading to reduced electron-phonon coupling while maintaining ideal nanomorphology. The reduced FVR and favorable morphology are simultaneously obtained in AQx-6 with pinpoint alkyl chain proliferation, achieving a high PCE of 18.6% with optimized VOC, JSC and FF. Our study discovered aggregation-state regulation is of great importance to the reduction of electron-phonon coupling, which paves the way to high-efficiency OSCs.

8.
Adv Mater ; 35(46): e2305092, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37487579

RESUMO

Photovoltaic windows with easy installation for the power supply of household appliances have long been a desire of energy researchers. However, due to the lack of top electrodes that offer both high transparency and low sheet resistance, the development of high-transparency photovoltaic windows for indoor lighting scenarios has lagged significantly behind photovoltaic windows where privacy issues are involved. Addressing this issue, this work develops a solution-processable transparent top electrode using sandwich structure silver nanowires, realizing high transparency in semi-transparent organic solar cells. The wettability and conducting properties of the electrode are improved by a modified hole-transport layer named HP. The semi-transparent solar cell exhibits good see-through properties at a high average visible transmittance of 50.8%, with power conversion efficiency of 7.34%, and light utilization efficiency of 3.73%, which is the highest without optical modulations. Moreover, flexible devices based on the above-mentioned architecture also show excellent mechanical tolerance compared with Ag electrode counterparts, which retains 94.5% of their original efficiency after 1500 bending cycles. This work provides a valuable approach for fabricating solution-processed high transparency organic solar cells, which is essential in future applications in building integrated photovoltaics.

9.
Adv Mater ; 35(32): e2300363, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37243566

RESUMO

The π-expansion of non-fullerene acceptors is a promising method for boosting the organic photovoltaic performance by allowing the fine-tuning of electronic structures and molecular packing. In this work, highly efficient organic solar cells (OSCs) are fabricated using a 2D π-expansion strategy to design new non-fullerene acceptors. Compared with the quinoxaline-fused cores of AQx-16, the π-expanded phenazine-fused cores of AQx-18 induce more ordered and compact packing between adjacent molecules, affording an optimized morphology with rational phase separation in the blend film. This facilitates efficient exciton dissociation and inhibited charge recombination. Consequently, a power conversion efficiency (PCE) of 18.2% with simultaneously increasing Voc , Jsc , and fill factor is achieved in the AQx-18-based binary OSCs. Significantly, AQx-18-based ternary devices fabricated via a two-in-one alloy acceptor strategy exhibit a superior PCE of 19.1%, one of the highest values ever reported for OSCs, along with a high Voc of 0.928 V. These results indicate the importance of the 2D π-expansion strategy for the delicate regulation of the electronic structures and crystalline behaviors of the non-fullerene acceptors to achieve superior photovoltaic performance, aimed at significantly promoting further development of OSCs.

10.
Chem Soc Rev ; 52(11): 3842-3872, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37183967

RESUMO

Chemical doping of organic semiconductors (OSCs) enables feasible tuning of carrier concentration, charge mobility, and energy levels, which is critical for the applications of OSCs in organic electronic devices. However, in comparison with p-type doping, n-type doping has lagged far behind. The achievement of efficient and air-stable n-type doping in OSCs would help to significantly improve electron transport and device performance, and endow new functionalities, which are, therefore, gaining increasing attention currently. In this review, the issue of doping efficiency and doping air stability in n-type doped OSCs was carefully addressed. We first clarified the main factors that influenced chemical doping efficiency in n-type OSCs and then explain the origin of instability in n-type doped films under ambient conditions. Doping microstructure, charge transfer, and dissociation efficiency were found to determine the overall doping efficiency, which could be precisely tuned by molecular design and post treatments. To further enhance the air stability of n-doped OSCs, design strategies such as tuning the lowest unoccupied molecular orbital (LUMO) energy level, charge delocalization, intermolecular stacking, in situ n-doping, and self-encapsulations are discussed. Moreover, the applications of n-type doping in advanced organic electronics, such as solar cells, light-emitting diodes, field-effect transistors, and thermoelectrics are being introduced. Finally, an outlook is provided on novel doping ways and material systems that are aimed at stable and efficient n-type doped OSCs.

11.
Nat Commun ; 14(1): 1304, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944642

RESUMO

Cooperativity is used by living systems to circumvent energetic and entropic barriers to yield highly efficient molecular processes. Cooperative structural transitions involve the concerted displacement of molecules in a crystalline material, as opposed to typical molecule-by-molecule nucleation and growth mechanisms which often break single crystallinity. Cooperative transitions have acquired much attention for low transition barriers, ultrafast kinetics, and structural reversibility. However, cooperative transitions are rare in molecular crystals and their origin is poorly understood. Crystals of 2-dimensional quinoidal terthiophene (2DQTT-o-B), a high-performance n-type organic semiconductor, demonstrate two distinct thermally activated phase transitions following these mechanisms. Here we show reorientation of the alkyl side chains triggers cooperative behavior, tilting the molecules like dominos. Whereas, nucleation and growth transition is coincident with increasing alkyl chain disorder and driven by forming a biradical state. We establish alkyl chain engineering as integral to rationally controlling these polymorphic behaviors for novel electronic applications.

12.
Adv Mater ; 34(18): e2200337, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35236013

RESUMO

Semitransparent organic photovoltaics (ST-OPVs) have drawn great attention for promising applications in building-integrated photovoltaics, providing additional power generation for daily use. A previously proposed strategy, "complementary NIR absorption," is widely applied for high-performance ST-OPVs. However, rational material design toward high performance has not been achieved. In this work, an external quantum efficiency (EQE) model describing this strategy is developed to explore the full potential of material design on ST-OPV performance. Guided by the model, a novel nonfullerene acceptor (NFA), ATT-9, is designed and synthesized, which possesses optimal bandgap for ST-OPVs, achieving a record short-circuit current density of 30 mA cm-2 and a power conversion efficiency of 13.40%, the highest value among devices based on NFAs with bandgaps lower than 1.2 eV. It is notworthy that, at such a low bandgap, the energy loss of the device is only 0.58 eV, which is attributed to the low energetic disorder confirmed by an ultralow Urbach energy of 21.6 meV. Benefiting from the optimal bandgap and low energy loss, the ATT-9-based ST-OPV achieves a high light utilization efficiency of 3.33% without optical modulations, and meanwhile shows excellent thermal insulation, exceeding the commercial 3M heat-insulating window film, demonstrating the outstanding application prospects of multifunctional ST-OPVs.

13.
Angew Chem Int Ed Engl ; 61(19): e202116111, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34962046

RESUMO

Semitransparent organic solar cells (ST-OSCs) are considered as one of the most valuable applications of OSCs and a strong contender in the market. However, the optical band gap of current high-performance ST-OSCs is still not low enough to achieve the optimal balance between power conversion efficiency (PCE) and average visible transmittance (AVT). An N-substituted asymmetric nonfullerene acceptor SN with over 40 nm bathochromically shifted absorption compared to Y6 was designed and synthesized, based on which the device with PM6 as donor obtained a PCE of 14.3 %, accompanied with a nonradiative voltage loss as low as 0.15 eV. Meanwhile, ternary devices with the addition of SN into PM6 : Y6 can achieve a PCE of 17.5 % with an unchanged open-circuit voltage and improved short-circuit current. Benefiting from extended NIR absorption and lowered voltage loss, ST-OSCs based on PM6 : SN : Y6 were fabricated and the optimized device demonstrated a PCE of 14.0 % at an AVT of 20.2 %, which is the highest PCE at an AVT over 20 %.

14.
ACS Appl Mater Interfaces ; 13(38): 45806-45814, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34523905

RESUMO

Electron acceptors with nonfused aromatic cores (NCAs) have aroused increasing interest in organic solar cells due to the low synthetic complexity and flexible chemical modification, but the corresponding device performance still lags behind. Herein, we designed and synthesized two new quinoxaline-based NCAs, namely, QOC6-4H and QOC6-4Cl. Although both NCAs show good backbone coplanarity, QOC6-4Cl with chlorinated end groups exhibits higher extinction coefficient, enhanced crystallinity, and more compact π-π stacking, which is correlated with the stronger intermolecular interactions induced by chlorine atoms. Benefiting from the broader and stronger optical absorption, improved carrier mobilities, and suppressed charge recombination, a notable power conversion efficiency (PCE) of 12.32% with a distinctly higher short-current density (Jsc) of 22.91 mA cm-2 and a fill factor (FF) of 69.01% could be obtained for the PBDB-T:QOC6-4Cl-based device. The PCEs of PBDB-T:QOC6-4H were only lower than 8%, which could mainly be attributed to the unsymmetric charge transport. Our work proves that the chlorination of end groups is a facile and effective strategy to enhance the intermolecular interactions and thus the photovoltaic performance of NCAs, and a careful modulation of the intermolecular interactions plays a vital role in further developing both high-performance and low-cost organic photovoltaic materials.

15.
Adv Mater ; 33(27): e2100830, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34048104

RESUMO

The trade-off between the open-circuit voltage (Voc ) and short-circuit current density (Jsc ) has become the core of current organic photovoltaic research, and realizing the minimum energy offsets that can guarantee effective charge generation is strongly desired for high-performance systems. Herein, a high-performance ternary solar cell with a power conversion efficiency of over 18% using a large-bandgap polymer donor, PM6, and a small-bandgap alloy acceptor containing two structurally similar nonfullerene acceptors (Y6 and AQx-3) is reported. This system can take full advantage of solar irradiation and forms a favorable morphology. By varying the ratio of the two acceptors, delicate regulation of the energy levels of the alloy acceptor is achieved, thereby affecting the charge dynamics in the devices. The optimal ternary device exhibits more efficient hole transfer and exciton separation than the PM6:AQx-3-based system and reduced energy loss compared with the PM6:Y6-based system, contributing to better performance. Such a "two-in-one" alloy strategy, which synergizes two highly compatible acceptors, provides a promising path for boosting the photovoltaic performance of devices.

16.
J Am Chem Soc ; 143(11): 4281-4289, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33661611

RESUMO

The emerging donor-acceptor-donor (A-D-A)-type nonfullerene acceptors (NFAs) featuring near-infrared (NIR) photoresponsivity have greatly boosted the development of organic photovoltaics (OPVs) and display great potential for sensitive NIR organic photodetectors (OPDs). However, NIR NFAs with absorption above 1000 nm, which is of great importance for application in NIR OPDs for bioimaging, remote communication, night surveillance, etc., are still rare due to the scarcity of strong electron-rich cores. We report herein a new dithiophene building block, namely PDT, which exhibits the strongest electron-donating ability among the widely used dithiophene building blocks. By applying PDT and PDTT as the electron-donating cores and DFIC as the electron-accepting terminals, we developed two new NIR electron acceptors, PDTIC-4F and PDTTIC-4F, with optical absorptions up to 1030 nm, surpassing that of the well-known O6T-4F acceptor. In comparison with the carbon-oxygen-bridged core COi8 in O6T-4F, the synthetic complexity of PDT and PDTT is significantly reduced. Conventional OPV devices based on PM6:PDTTIC-4F display power conversion efficiencies (PCEs) of up to 10.70% with a broad external quantum efficiency (EQE) response from the ultraviolet-visible to the infrared, leading to a high short-circuit current density (Jsc) of 25.90 mA cm-2. Encouraged by these results, we investigated inverted PM6:PDTTIC-4F-based OPD devices by suppressing the dark current via modulation of the film thickness. The optimal OPD device exhibits compelling performance metrics that can compete with those of commercial silicon photodiodes: a record responsivity of 0.55 A W-1 (900 nm) among photodiode-type OPDs and excellent shot-noise-limited specific detectivity (Dsh*) of over 1013 jones.

17.
J Am Chem Soc ; 142(27): 11613-11628, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32460485

RESUMO

The use of photovoltaic technologies has been regarded as a promising approach for converting solar energy to electricity and mitigating the energy crisis, and among these, organic photovoltaics (OPVs) have attracted broad interest because of their solution processability, flexibility, light weight, and potential for large-area processing. The development of OPV materials, especially electron acceptors, has been one of the focuses in recent years. Compared with fullerene derivates, n-type non-fullerene molecules have some unique merits, such as synthetic simplicity, high tunability of the absorption and energy levels, and small energy loss. In the last 5 years, organic solar cells based on n-type non-fullerene molecules have achieved a significant breakthrough in the power conversion efficiency from approximately 4% to over 17%, which is superior to those of fullerene-based solar cells; meanwhile, n-type non-fullerene molecules have created brand new opportunities for the application of OPVs in some special situations. This Perspective analyzes the key design strategies of high-performance n-type molecular photovoltaic materials and highlights instructive examples of their various applications, including in ternary and tandem solar cells, high-efficiency semitransparent solar cells for power-generating building facades and windows, and indoor photovoltaics for driving low-power-consumption devices. Moreover, to accelerate the pace toward commercialization of OPVs, the existing challenges and future directions are also reviewed from the perspectives of efficiency, stability, and large-area fabrication.

18.
IEEE Trans Biomed Eng ; 67(8): 2206-2214, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31804925

RESUMO

Microwave induced thermoacoustic tomography is a newly developing non-invasive and non-ionizing modality. In practical applications, such as breast tumor detection and brain imaging, the acoustic properties in the tissue to be detected are usually unknown and spatially non-uniform, which results in distortion and blurring of the buried targets. In this paper, a reconstruction method based on speed of sound (SoS) autofocus is proposed to reduce the effect of acoustic inhomogeneity in different soft tissues. According to this method, the number of tissue types, which are referred to as clusters in this work, can be automatically determined by a decision graph. To distinguish the boundaries of different tissues, a Gaussian Mixture Model (GMM) is fitted to the obtained image data for soft clustering instead of traditional hard clustering. Through fixing the tissue centers which are characterized by corresponding data density peaks as the means of Gaussian parameters rather than choosing them randomly, adaptive and robust reconstruction performance can be guaranteed. After performing an iterative GMM optimization, the SoS autofocus is achieved. Image reconstructed by using the updated SoS distribution is with higher accuracy than that with homogeneous assumption. Compared with the existing similar methods, the proposed method strategy obviates the need of extra experiment costs, and possesses good robustness with respect to hard assignment model errors when the medium is relatively complex. Realistic breast model and brain model simulations combined with experiments of agar phantom and pig's brain are provided to demonstrate the effectiveness of the proposed method.


Assuntos
Algoritmos , Micro-Ondas , Acústica , Animais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Tomografia , Tomografia Computadorizada por Raios X
19.
Adv Mater ; 32(4): e1906324, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31815332

RESUMO

Manipulating charge generation in a broad spectral region has proved to be crucial for nonfullerene-electron-acceptor-based organic solar cells (OSCs). 16.64% high efficiency binary OSCs are achieved through the use of a novel electron acceptor AQx-2 with quinoxaline-containing fused core and PBDB-TF as donor. The significant increase in photovoltaic performance of AQx-2 based devices is obtained merely by a subtle tailoring in molecular structure of its analogue AQx-1. Combining the detailed morphology and transient absorption spectroscopy analyses, a good structure-morphology-property relationship is established. The stronger π-π interaction results in efficient electron hopping and balanced electron and hole mobilities attributed to good charge transport. Moreover, the reduced phase separation morphology of AQx-2-based bulk heterojunction blend boosts hole transfer and suppresses geminate recombination. Such success in molecule design and precise morphology optimization may lead to next-generation high-performance OSCs.

20.
Adv Mater ; 31(51): e1904283, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31693243

RESUMO

Compared with the quick development of polymer solar cells, achieving high-efficiency small-molecule solar cells (SMSCs) remains highly challenging, as they are limited by the lack of matched materials and morphology control to a great extent. Herein, two small molecules, BSFTR and Y6, which possess broad as well as matched absorption and energy levels, are applied in SMSCs. Morphology optimization with sequential solvent vapor and thermal annealing makes their blend films show proper crystallinity, balanced and high mobilities, and favorable phase separation, which is conducive for exciton dissociation, charge transport, and extraction. These contribute to a remarkable power conversion efficiency up to 13.69% with an open-circuit voltage of 0.85 V, a high short-circuit current of 23.16 mA cm-2 and a fill factor of 69.66%, which is the highest value among binary SMSCs ever reported. This result indicates that a combination of materials with matched photoelectric properties and subtle morphology control is the inevitable route to high-performance SMSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...