Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 316: 108934, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31870840

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is one of the most common lethal tumors with a high recurrence rate and low survival rate. Therefore, an urgent need exists for novel and effective treatment strategies for HNSCC patients. METHODS: Osthole, a natural ingredient extracted from Cnidium monnieri (L.) 'Cusson', has multiple pharmacological effects including antineoplastic activity. Regrettably, the antineoplastic effect of osthole in HNSCC cells remains undefined. We utilize in vitro assays to assess the anti-proliferative effects of osthole in HNSCC cells and tumorigenesis assays using FaDu cells in murine HNSCC models to assess in vivo function. Moreover, the possible molecular mechanisms of Osthole on HNSCC cells was also investigated. RESULTS: Our findings show that the anti-proliferation effect of osthole might function through induction of cell cycle arrest (G2/M phase) and apoptosis in HNSCC. Osthole could also down-regulating the protein level of cell cycle and apoptosis related proteins, such as Bcl-2, PARP1, Survivin, CyclinB1 and Cdc2, while up-regulating expression of Cleaved Caspase3/9, Cleaved PARP1 and Bax. Similarly, osthole suppressed the in vivo growth of FaDu cells in a subcutaneous tumor model. In terms of mechanism, our data show that osthole can suppress the PI3K/AKT pathway. CONCLUSIONS: In the current study, our in vitro and in vivo assay showed the suppressive effect of Osthole on HNSCC cells through induce cell cycle arrest (G2/M phase) and apoptosis. Moreover, the action mechanisms of Osthole on proliferation related signaling pathways was disclosed. Our present study suggests that osthole might be used as an effective therapeutic agent for patients with HNSCC.


Assuntos
Apoptose/efeitos dos fármacos , Cumarínicos/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Cnidium/química , Cnidium/metabolismo , Cumarínicos/química , Cumarínicos/uso terapêutico , Ciclina B1/genética , Ciclina B1/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
2.
Mol Med Rep ; 9(6): 2283-92, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24718752

RESUMO

The present study aimed to investigate the role of histone modification and DNA methylation in epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) silencing in gastric cancer (GC). In the present study, four GC cell lines, and 45 paired normal and GC tissue samples were used to assess EFEMP1 expression using quantitative polymerase chain reaction (PCR), and EFEMP1 gene methylation status was evaluated by methylation-specific PCR. The involvement of histone modification in GC cell lines was examined by a chromatin immunoprecipitation (ChIP) assay. The results demonstrated that EFEMP1 mRNA level and methylation status in the EFEMP1 promoter region was associated with tumor differentiation, depth of tumor invasion and lymph node metastasis. DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (DAC) rapidly reduced DNA methylation and histone H3-K9 trimethylation at the silenced loci and reactivated EFEMP1 expression. By contrast, the histone deacetylase inhibitor trichostatin A markedly increased histone H3-K9 acetylation. However, it had no effect on DNA methylation, histone H3-K9 trimethylation or gene expression. In conclusion, the results suggested that EFEMP1 may function as a tumor suppressor in GC. Aberrant DNA methylation and histone H3-K9 trimethylation of EFEMP1 may be responsible for its downregulation in GC, and thus have an important role in tumor invasion and metastasis.


Assuntos
Epigênese Genética , Proteínas da Matriz Extracelular/genética , Inativação Gênica , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Metilação de DNA , Proteínas da Matriz Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Invasividade Neoplásica , Metástase Neoplásica , Regiões Promotoras Genéticas
3.
Cancer Invest ; 28(4): 331-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19857042

RESUMO

To determine a possible function of histone modifications in stomach carcinogenesis, we analyzed global and MGMT-promoter levels of di-methyl-H3-K9, di-methyl-H3-K4 and acetyl-H3-K9, as well as MGMT DNA methylation and mRNA expression following treatment with 5-aza-2' -deoxycytidine and/or Trichostatin A. We found that histone H3-K9 di-methylation, H3-K4 di-methylation, H3-K9 acetylation and DNA methylation work in combination to silence MGMT. The results indicate that histone modifications as well as DNA methylation may be involved in stomach carcinogenesis. In addition to its effect on DNA methylation, 5-aza-2' -deoxycytidine can act at histone modification level to reactivate MGMT expression in a region-specific and DNA methylation-dependent manner.


Assuntos
Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Neoplasias Gástricas/genética , Proteínas Supressoras de Tumor/genética , Acetilação , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Linhagem Celular Tumoral , Decitabina , Humanos , Ácidos Hidroxâmicos/farmacologia , Regiões Promotoras Genéticas , Neoplasias Gástricas/etiologia
4.
Oncol Rep ; 22(5): 1221-7, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19787243

RESUMO

In the course of gastric cancer development, gene silencing by DNA hypermethylation is an important mechanism. While DNA methylation often co-exists with histone modifications to regulate gene expression, the function of histone modifications in gene silencing in gastric cancer has not been evaluated in detail. p16, a well-known tumor suppressor gene, is frequently silenced in DNA hypermethylation manner in gastric cancer. Accordingly, we chose p16 to clarify whether there is a correlation among histone H3 lysine 9 (H3-K9) di-methylation, H3-K9 acetylation, DNA methylation and p16 expression in human gastric cancer. Three gastric cancer cells, MKN-45, SGC-7901 and BGC-823, were treated with 5-aza-2'-deoxycytidine (5-Aza-dC) and/or trichostatin A (TSA). We investigated p16 promoter DNA methylation status, p16 mRNA levels, regional and global levels of di-methyl-H3-K9 and acetyl-H3-K9 in four groups: i) 5-Aza-dC, ii) TSA, iii) the combination of 5-Aza-dC and TSA and iv) control group with no treatments. p16 silencing is characterized by DNA hypermethylation, H3-K9 hypoacetylation and H3-K9 hypermethylation at the promoter region. Treatment with TSA, increased H3-K9 acetylation at the hypermethylated promoter, but did not affect H3-K9 di-methylation or p16 expression. By contrast, treatment with 5-Aza-dC, reduced H3-K9 di-methylation, increased H3-K9 acetylation at the hypermethylated promoter and reactivated the expression of p16. Combined treatment restored the expression of p16 synergistically. In addition, 5-Aza-dC and the combined treatment did not result in global alteration of H3-K9 di-methylation. These results suggest that H3-K9 di-methylation, H3-K9 acetylation and DNA methylation work in combination to silence p16 in gastric cancer. The decreased H3-K9 di-methylation correlates with DNA demethylation and reactivation of p16. H3-K9 di-methylation as well as DNA methylation related to p16 silencing is limited to the promoter region. In addition to its effect on DNA methylation, 5-Aza-dC can act at histone modification levels to reactivate p16 expression in region-specific and DNA methylation-dependent manner.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Metilação de DNA , Histonas/genética , Lisina/genética , Regiões Promotoras Genéticas/genética , Neoplasias Gástricas/genética , Acetilação , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Western Blotting , Imunoprecipitação da Cromatina , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Metilases de Modificação do DNA/antagonistas & inibidores , DNA de Neoplasias/genética , Decitabina , Inibidores Enzimáticos/farmacologia , Inativação Gênica , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Imunoprecipitação , Reação em Cadeia da Polimerase , Células Tumorais Cultivadas
5.
Zhonghua Wei Chang Wai Ke Za Zhi ; 12(5): 494-7, 2009 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-19742343

RESUMO

OBJECTIVE: To investigate the effects of 5-Aza-2'-deoxycytidine (5-Aza-dC) and trichostatin A (TSA) on DNA methylation and expression of P16, hMLH1 and MGMT genes in the human gastric cancer cell line MGC-803, and to explore the mechanism of P16, hMLH1 and MGMT gene silencing in human gastric cancer cells. METHODS: MGC-803 cells were cultured in RPMI-1640 medium and were treated with 5-Aza-dC or TSA. Methylation-specific polymerase chain reaction (MS-PCR) was used to detect the promoter methylation status of P16, hMLH1 and MGMT genes. RT-PCR was used to detect the mRNA expressions of P16, hMLH1 and MGMT. RESULTS: Promoter hypermethylation of P16, hMLH1 and MGMT genes were detected in MGC-803 cells, and mRNA expressions of P16, hMLH1 and MGMT were absent before treatment. After treatment with 5-Aza-dC, the promoter region of the P16, hMLH1 and MGMT gene exhibited a demethylation status, and their mRNA expressions were increased. The treatment with TSA had no effects on DNA demethylation or restoration of P16 or hMLH1 expression. P16, hMLH1 and MGMT mRNA relative expression levels after treatment with a combination of 5-Aza-dC and TSA were 0.412+/-0.030, 0.397+/-0.024 and 0.553+/-0.043 respectively, which were higher than those after 5-Aza-dC treatment alone (0.221+/-0.022, 0.214+/-0.018 and 0.156+/-0.017, all P<0.05). CONCLUSIONS: Promoter hypermethylation is a major mechanism of P16, hMLH1 and MGMT gene silencing in human gastric cancer cells. Treatment with 5-Aza-dC alone or the combination of 5-Aza-dC and TSA can reactivate the expressions of these genes.


Assuntos
Azacitidina/análogos & derivados , Metilação de DNA/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Neoplasias Gástricas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/farmacologia , Linhagem Celular Tumoral , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Decitabina , Genes p16 , Humanos , Proteína 1 Homóloga a MutL , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Proteínas Supressoras de Tumor/genética
6.
Zhonghua Yi Xue Za Zhi ; 88(35): 2490-3, 2008 Sep 16.
Artigo em Chinês | MEDLINE | ID: mdl-19080631

RESUMO

OBJECTIVE: To identify the association of his tone H3 lysine 9 (H3-K9) methylation with DNA methylation and the expression of the mismatch repair gene hMLH1 in human gastric cancer cells. METHODS: Gastric cancer cells of the lines BGC-823 and MGC-803 were cultured and treated with 5-Aza-2'-deoxycytidine (5-Aza-dC), a demethylation agent, for 72 hour. Chromatin immunoprecipitation (ChIP) assay was used to assess the status of histone H3 lysine 9 methylation in the promoter regions of hMLH1 gene. Methylation-specific PCR (MSP) was used to evaluate the effect of 5-Aza-dC on DNA methylation status. RT-PCR was used to examine the hMLH1 gene expression. RESULTS: In the MGC-803 cells, silenced hMLH1 gene was characterized by DNA methylation and histone H3-K9 hypermethylation; 5-Aza-dC demethylated the DNA and reduced the histone H3-K9 methylation at silenced loci and resulted in reactivation of hMLH1 gene therein. Contrary to the MGC-803 cells, BGC-823 cells expressed hMLH1 gene with DNA demethylation and histone H3-K9 hypomethylation; and 5-Aza-dC had no effects on the gene expression, DNA methylation, and histone H3-K9 methylation therein. CONCLUSION: Hypermethylation of DNA in the promoter region is related to transcriptional silencing of hMLH1 gene. Histone H3-K9 methylation in different regions of the promoter studied correlates with DNA methylation status of hMLH1 gene in gastric cancer cells. Alteration of DNA methylation affects histone H3-K9 methylation. 5-Aza-dC can control hMLH1 expression, DNA methylation, and histone H3-K9 methylation in the promoter.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Metilação de DNA , Reparo de Erro de Pareamento de DNA , Histonas/genética , Proteínas Nucleares/genética , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Linhagem Celular Tumoral , Expressão Gênica , Genes Supressores de Tumor , Humanos , Proteína 1 Homóloga a MutL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/genética
7.
World J Gastroenterol ; 13(46): 6166-71, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-18069755

RESUMO

AIM: To identify the relationship between DNA hyper-methylation and histone modification at a hyperme-thylated, silenced tumor suppressor gene promoter in human gastric cancer cell lines and to elucidate whether alteration of DNA methylation could affect histone modification. METHODS: We used chromatin immunoprecipitation (ChIP) assay to assess the status of histone acetylation and methylation in promoter regions of the p16 and mutL homolog 1 (MLH1) genes in 2 gastric cancer cell lines, SGC-7901 and MGC-803. We used methylation-specific PCR (MSP) to evaluate the effect of 5-Aza-2'-deoxycytidine (5-Aza-dC), trichostatin A (TSA) or their combination treatment on DNA methylation status. We used RT-PCR to determine whether alterations of histone modification status after 5-Aza-dC and TSA treatment are reflected in gene expression. RESULTS: For the p16 and MLH1 genes in two cell lines, silenced loci associated with DNA hypermethylation were characterized by histone H3-K9 hypoacetylation and hypermethylation and histone H3-K4 hypomethylation. Treatment with TSA resulted in moderately increased histone H3-K9 acetylation at the silenced loci with no effect on histone H3-K9 methylation and minimal effects on gene expression. In contrast, treatment with 5-Aza-dC rapidly reduced histone H3-K9 methylation at the silenced loci and resulted in reactivation of the two genes. Combined treatment with 5-Aza-dC and TSA was synergistic in reactivating gene expression at the loci showing DNA hypermethylation. Similarly, histone H3-K4 methylation was not affected after TSA treatment, and increased moderately at the silenced loci after 5-Aza-dC treatment. CONCLUSION: Hypermethylation of DNA in promoter CpG islands is related to transcriptional silencing of tumor suppressor genes. Histone H3-K9 methylation in different regions of the promoters studied correlates with DNA methylation status of each gene in gastric cancer cells. However, histone H3-K9 acetylation and H3-K4 methylation inversely correlate with DNA methylation status of each gene in gastric cancer cells. Alteration of DNA methylation affects histone modification.


Assuntos
Metilação de DNA , DNA de Neoplasias/genética , Inativação Gênica/fisiologia , Genes Supressores de Tumor/fisiologia , Histonas/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Azacitidina/farmacologia , Linhagem Celular Tumoral , Cromatina/metabolismo , Ilhas de CpG/genética , Metilação de DNA/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Proteína 1 Homóloga a MutL , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Neoplasias Gástricas/patologia , Proteína Supressora de Tumor p14ARF/genética , Proteína Supressora de Tumor p14ARF/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...