Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 765
Filtrar
1.
EJNMMI Res ; 14(1): 62, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967722

RESUMO

BACKGROUND: Uveal melanoma (UM) is the most common primary intraocular tumor in adults, and early detection is critical to improve the clinical outcome of this disease. In this study, the diagnostic effectiveness of [18F]AlF-NOTA-PRGD2 (an investigational medicinal product) positron emission tomography (PET) imaging in UM xenografts and UM patients were evaluated. The cell uptake, cell binding ability and in vitro stability of [18F]AlF-NOTA-PRGD2 were evaluated in 92-1 UM cell line. MicroPET imaging and biodistribution study of [18F]AlF-NOTA-PRGD2 were conducted in 92-1 UM xenografts. Then, UM patients were further recruited for evaluating the diagnostic effectiveness of [18F]AlF-NOTA-PRGD2 PET imaging (approval no. NCT02441972 in clinicaltrials.gov). In addition, comparison of [18F]AlF-NOTA-PRGD2 and 18F-labelled fluorodeoxyglucose ([18F]FDG) PET imaging in UM xenografts and UM patients were conducted. RESULTS: The in vitro data showed that [18F]AlF-NOTA-PRGD2 had a high cell uptake, cell binding ability and in vitro stability in 92-1 UM cell line. The in vivo data indicated that 92-1 UM tumors were clearly visualized with the [18F]AlF-NOTA-PRGD2 tracer in the subcutaneous and ocular primary UM xenografts model at 60 min post-injection. And the tumor uptake of the tracer was 2.55 ± 0.44%ID/g and 1.73 ± 0.15%ID/g at these two tissue locations respectively, at 7 days after animal model construction. The clinical data showed that tumors in UM patients were clearly visualized with the [18F]AlF-NOTA-PRGD2 tracer at 60 min post-injection. In addition, [18F]AlF-NOTA-PRGD2 tracer showed higher sensitivity and specificity for PET imaging in UM xenografts and UM patients compared to [18F]FDG tracer. CONCLUSION: [18F]AlF-NOTA-PRGD2 PET imaging may be a more preferred approach in the diagnosis of primary UM compared to [18F]FDG PET imaging. Additionally, due to the high tumor-to-background ratio, [18F]AlF-NOTA-PRGD2 PET imaging seems also to be applicable for the diagnosis of UM patients with liver metastasis. TRIAL REGISTRATION: ClinicalTrials.gov: NCT02441972, Registered 1 January 2012, https://clinicaltrials.gov/study/NCT02441972 .

2.
J Food Sci ; 89(7): 4109-4122, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957103

RESUMO

The elucidation of the interaction mechanism between phospholipids and milk proteins within emulsions is pivotal for comprehending the properties of infant formula fat globules. In this study, multispectral methods and molecular docking were employed to explore the relationship between phosphatidylcholine (PC) and whey protein isolate (WPI). Observations indicate that the binding constant, alongside thermodynamic parameters, diminishes as temperature ascends, hinting at a predominantly static quenching mechanism. Predominantly, van der Waals forces and hydrogen bonds constitute the core interactions between WPI and PC. This assertion is further substantiated by Fourier transform infrared spectroscopy, which verifies PC's influence on WPI's secondary structure. A detailed assessment of thermodynamic parameters coupled with molecular docking reveals that PC predominantly adheres to specific sites within α-lactalbumin, ß-lactoglobulin, and bovine serum albumin, propelled by a synergy of hydrophobic interactions, hydrogen bonding, and van der Waals forces, with binding energies noted at -5.59, -6.71, and -7.85 kcal/mol, respectively. An increment in PC concentration is observed to amplify the emulsification properties of WPI whilst concurrently diminishing the zeta potential. This study establishes a theoretical foundation for applying the PC-WPI interaction mechanism in food.


Assuntos
Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Fosfatidilcolinas , Termodinâmica , Proteínas do Soro do Leite , Proteínas do Soro do Leite/química , Fosfatidilcolinas/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Emulsões/química , Lactalbumina/química , Lactalbumina/metabolismo , Soroalbumina Bovina/química , Fórmulas Infantis/química
3.
Free Radic Biol Med ; 222: 552-568, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971541

RESUMO

Uveal melanoma (UM) is a rare yet lethal primary intraocular malignancy affecting adults. Analysis of data from The Cancer Genome Atlas (TCGA) database revealed that FGFR1 expression was increased in UM tumor tissues and was linked to aggressive behavior and a poor prognosis. This study assessed the anti-tumor effects of Erdafitinib, a selective pan-FGFR inhibitor, in both in vitro and in vivo UM models. Erdafitinib exhibited a robust anti-cancer activity in UM through inducing ferroptosis in the FGFR1-dependent manner. Transcriptomic data revealed that Erdafitinib mediated its anti-cancer effects via modulating the ferritinophagy/lysosome biogenesis. Subsequent research revealed that Erdafitinib exerted its effects by reducing the expression of FGFR1 and inhibiting the activity of mTORC1 in UM cells. Concurrently, it enhanced the dephosphorylation, nuclear translocation, and transcriptional activity of TFEB. The aggregation of TFEB in nucleus triggered FTH1-dependent ferritinophagy, leading to lysosomal activation and iron overload. Conversely, the overexpression of FGFR1 served to mitigate the effects of Erdafitinib on ferritinophagy, lysosome biogenesis, and the activation of the mTORC1/TFEB signaling pathway. In vivo experiments have convincingly shown that Erdafitinib markedly curtails tumor growth in an UM xenograft mouse model, an effect that is closely correlated with a decrease in FGFR1 expression levels. The present study is the first to demonstrate that Erdafitinib powerfully induces ferroptosis in UM by orchestrating the ferritinophagy and lysosome biogenesis via modulating the FGFR1/mTORC1/TFEB signaling. Consequently, Erdafitinib emerges as a strong candidate for clinical trial investigation, and FGFR1 emerges as a novel and promising therapeutic target in the treatment of UM.

4.
Cell Commun Signal ; 22(1): 362, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010102

RESUMO

Dihydroorotase (DHOase) is the third enzyme in the six enzymatic reaction steps of the endogenous pyrimidine nucleotide de novo biosynthesis pathway, which is a metabolic pathway conserved in both bacteria and eukaryotes. However, research on the biological function of DHOase in plant pathogenic fungi is very limited. In this study, we identified and named MoPyr4, a homologous protein of Saccharomyces cerevisiae DHOase Ura4, in the rice blast fungus Magnaporthe oryzae and investigated its ability to regulate fungal growth, pathogenicity, and autophagy. Deletion of MoPYR4 led to defects in growth, conidiation, appressorium formation, the transfer and degradation of glycogen and lipid droplets, appressorium turgor accumulation, and invasive hypha expansion in M. oryzae, which eventually resulted in weakened fungal pathogenicity. Long-term replenishment of exogenous uridine-5'-phosphate (UMP) can effectively restore the phenotype and virulence of the ΔMopyr4 mutant. Further study revealed that MoPyr4 also participated in the regulation of the Pmk1-MAPK signaling pathway, co-localized with peroxisomes for the oxidative stress response, and was involved in the regulation of the Osm1-MAPK signaling pathway in response to hyperosmotic stress. In addition, MoPyr4 interacted with MoAtg5, the core protein involved in autophagy, and positively regulated autophagic degradation. Taken together, our results suggested that MoPyr4 for UMP biosynthesis was crucial for the development and pathogenicity of M. oryzae. We also revealed that MoPyr4 played an essential role in the external stress response and pathogenic mechanism through participation in the Pmk1-MAPK signaling pathway, peroxisome-related oxidative stress response mechanism, the Osm1-MAPK signaling pathway and the autophagy pathway.


Assuntos
Autofagia , Proteínas Fúngicas , Oryza , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Oryza/microbiologia , Virulência/genética , Peroxissomos/metabolismo , Doenças das Plantas/microbiologia , Ascomicetos/patogenicidade , Ascomicetos/genética , Ascomicetos/enzimologia , Sistema de Sinalização das MAP Quinases , Estresse Oxidativo
5.
J Affect Disord ; 362: 308-316, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971193

RESUMO

BACKGROUND: The bidirectional relationships between metabolic syndrome (MetS) and major depressive disorder (MDD) were discovered, but the influencing factors of the comorbidity were barely investigated. We aimed to fully explore the factors and their associations with MetS in MDD patients. METHODS: The data were retrieved from the electronic medical records of a tertiary psychiatric hospital in Beijing from 2016 to 2021. The influencing factors were firstly explored by univariate analysis and multivariate logistic regressions. The propensity score matching was used to reduce the selection bias of participants. Then, the Bayesian networks (BNs) with hill-climbing algorithm and maximum likelihood estimation were preformed to explore the relationships between influencing factors with MetS in MDD patients. RESULTS: Totally, 4126 eligible subjects were included in the data analysis. The proportion rate of MetS was 32.6 % (95 % CI: 31.2 %-34.1 %). The multivariate logistic regression suggested that recurrent depression, uric acid, duration of depression, marriage, education, number of hospitalizations were significantly associated with MetS. In the BNs, number of hospitalizations and uric acid were directly connected with MetS. Recurrent depression and family history psychiatric diseases were indirectly connected with MetS. The conditional probability of MetS in MDD patients with family history of psychiatric diseases, recurrent depression and two or more times of hospitalizations was 37.6 %. CONCLUSION: Using the BNs, we found that number of hospitalizations, recurrent depression and family history of psychiatric diseases contributed to the probability of MetS, which could help to make health strategies for specific MDD patients.

6.
Trends Pharmacol Sci ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39003157

RESUMO

PANoptosis is a unique innate immune inflammatory lytic cell death pathway initiated by an innate immune sensor and driven by caspases and RIPKs. As a distinct pathway, the execution of PANoptosis cannot be hindered by targeting other cell death pathways, such as pyroptosis, apoptosis, or necroptosis. Instead, targeting key PANoptosome components can serve as a strategy to prevent this form of cell death. Given the physiological relevance in several diseases, PANoptosis is a pivotal therapeutic target. Notably, previous research has primarily focused on the role of PANoptosis in cancer and infectious and inflammatory diseases. By contrast, its role in cardiovascular diseases has not been comprehensively discussed. Here, we review the available evidence on PANoptosis in cardiovascular diseases, including cardiomyopathy, atherosclerosis, myocardial infarction, myocarditis, and aortic aneurysm and dissection, and explore a variety of agents that target PANoptosis, with the overarching goal of providing a novel complementary approach to combatting cardiovascular diseases.

7.
Tree Physiol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976033

RESUMO

Mangroves perform a crucial ecological role along the tropical and subtropical coastal intertidal zone where salinity fluctuation is frequently happened. However, the differential responses of mangrove plant at transcriptome combined metabolome level to variable salinity are not well documented. In this study, we used Avicennia marina, a pioneer species of mangrove wetlands and one of the most salt-tolerant mangroves, to investigate the differential salt tolerance mechanisms under low and high salinity using ICP-MS, transcriptomic and metabolomic analysis. The results showed that HAK8 was up-regulated and transported K+ into the roots under low salinity. However, under high salinity, AKT1 and NHX2 were strongly induced, which indicated the transport of K+ and Na+ compartmentalization to maintain ion homeostasis. In addition, A. marina tolerates low salinity by up-regulating ABA signaling pathway and accumulating more mannitol, unsaturated fatty acids, amino acids, and L-ascorbic acid in the roots. Under high salinity, A. marina undergoes a more drastic metabolic network rearrangement in the roots, such as more L-ascorbic acid and oxiglutatione were up-regulated, while carbohydrates, lipids and amino acids were down-regulated in the roots, finally glycolysis and TCA cycle were promoted to provide more energy to improve salt tolerance. Our findings suggest that the major salt tolerance traits in A. marina can be attributed to complex regulatory and signaling mechanisms, and show significant differences between low and high salinity.

8.
Int J Ophthalmol ; 17(7): 1300-1306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026913

RESUMO

AIM: To determine the factors related to preoperative ocular characters that are predictive of insufficient vault (<250 µm) after implantable collamer lens (ICL V4c; STAAR Surgical) implantation. METHODS: The participants underwent ICL surgery and were divided into the low (<250 µm) and normal (250-1000 µm) vault groups based on the postoperative vault at 3mo. The preoperative biometric parameters and clinical outcomes were compared between the two groups. The relationship between the 3-month vault values and preoperative ocular parameters were evaluated by Generalized estimating equations. RESULTS: Sixteen (23 eyes) and 36 patients (63 eyes) were in the low and normal vault groups, respectively. All implantation procedures were uneventful with no cataract formation in the early postoperative period. The sulcus-to-sulcus lens rise (STSL) and iris ciliary angle (ICA) were correlated with vault at 3mo after surgery. Every 0.1 mm increase in STSL was associated with 38.9 µm decrease in the postoperative 3-month vault. A rise of 1 degree in ICA is associated with a reduction of 4 µm in vault. CONCLUSION: Eyes with a narrow ciliary sulcus are associated with a higher rate of low vault after ICL implantation, suggesting a need for adjustments to the ICL size in these patients. Evaluating the characteristics of the ciliary sulcus contributes valuable information to predict low vault after surgery.

9.
Exp Eye Res ; 245: 109986, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945519

RESUMO

Ocular complications of diabetes mellitus (DM) are the leading cause of vision loss. Ocular inflammation often occurs in the early stage of DM; however, there are no proven quantitative methods to evaluate the inflammatory status of eyes in DM. The 18 kDa translocator protein (TSPO) is an evolutionarily conserved cholesterol binding protein localized in the outer mitochondrial membrane. It is a biomarker of activated microglia/macrophages; however, its role in ocular inflammation is unclear. In this study, fluorine-18-DPA-714 ([18F]-DPA-714) was evaluated as a specific TSPO probe by cell uptake, cell binding assays and micro positron emission tomography (microPET) imaging in both in vitro and in vivo models. Primary microglia/macrophages (PMs) extracted from the cornea, retina, choroid or sclera of neonatal rats with or without high glucose (50 mM) treatment were used as the in vitro model. Sprague-Dawley (SD) rats that received an intraperitoneal administration of streptozotocin (STZ, 60 mg/kg once) were used as the in vivo model. Increased cell uptake and high binding affinity of [18F]-DPA-714 were observed in primary PMs under hyperglycemic stress. These findings were consistent with cellular morphological changes, cell activation, and TSPO up-regulation. [18F]-DPA-714 PET imaging and biodistribution in the eyes of DM rats revealed that inflammation initiates in microglia/macrophages in the early stages (3 weeks and 6 weeks), corresponding with up-regulated TSPO levels. Thus, [18F]-DPA-714 microPET imaging may be an effective approach for the early evaluation of ocular inflammation in DM.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Radioisótopos de Flúor , Microglia , Tomografia por Emissão de Pósitrons , Pirazóis , Pirimidinas , Ratos Sprague-Dawley , Animais , Ratos , Tomografia por Emissão de Pósitrons/métodos , Microglia/metabolismo , Retinopatia Diabética/metabolismo , Retinopatia Diabética/diagnóstico por imagem , Compostos Radiofarmacêuticos/farmacocinética , Masculino , Macrófagos/metabolismo , Células Cultivadas , Receptores de GABA/metabolismo , Animais Recém-Nascidos , Proteínas de Transporte , Receptores de GABA-A
10.
Neuroimage ; 297: 120701, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38914210

RESUMO

Due to a high degree of symptom overlap in the early stages, with movement disorders predominating, Parkinson's disease (PD) and multiple system atrophy (MSA) may exhibit a similar decline in motor areas, yet they differ in their spread throughout the brain, ultimately resulting in two distinct diseases. Drawing upon neuroimaging analyses and altered motor cortex excitability, potential diffusion mechanisms were delved into, and comparisons of correlations across distinct disease groups were conducted in a bid to uncover significant pathological disparities. We recruited thirty-five PD, thirty-seven MSA, and twenty-eight matched controls to conduct clinical assessments, electromyographic recording, and magnetic resonance imaging scanning during the "on medication" state. Patients with neurodegeneration displayed a widespread decrease in electrophysiology in bilateral M1. Brain function in early PD was still in the self-compensatory phase and there was no significant change. MSA patients demonstrated an increase in intra-hemispheric function coupled with a decrease in diffusivity, indicating a reduction in the spread of neural signals. The level of resting motor threshold in healthy aged showed broad correlations with both clinical manifestations and brain circuits related to left M1, which was absent in disease states. Besides, ICF exhibited distinct correlations with functional connections between right M1 and left middle temporal gyrus in all groups. The present study identified subtle differences in the functioning of PD and MSA related to bilateral M1. By combining clinical information, cortical excitability, and neuroimaging intuitively, we attempt to bring light on the potential mechanisms that may underlie the development of neurodegenerative disease.

11.
Phytomedicine ; 131: 155771, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851101

RESUMO

BACKGROUND: Sepsis often leads to significant morbidity and mortality due to severe myocardial injury. As is known, the activation of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome crucially contributes to septic cardiomyopathy (SCM) by facilitating the secretion of interleukin (IL)-1ß and IL-18. The removal of palmitoyl groups from NLRP3 is a crucial step in the activation of the NLRP3 inflammasome. Thus, the potential inhibitors that regulate the palmitoylation and inactivation of NLRP3 may significantly diminish sepsis-induced cardiac dysfunction. PURPOSE: The present study sought to explore the effects of the prospective flavonoid compounds targeting NLRP3 on SCM and to elucidate the associated underlying mechanisms. STUDY DESIGN: The palmitoylation and activation of NLRP3 were detected in H9c2 cells and C57BL/6 J mice. METHODS/RESULTS: Echocardiography, histological staining, western blotting, co-immunoprecipitation, qPCR, ELISA and network pharmacology were used to assess the impact of vaccarin (VAC) on SCM in mice subjected to lipopolysaccharide (LPS) injection. From the collection of 74 compounds, we identified that VAC had the strongest capability to suppress NLRP3 luciferase report gene activity in cardiomyocytes, and the anti-inflammatory characteristics of VAC were further ascertained by the network pharmacology. Exposure of LPS triggered apoptosis, inflammation, oxidative stress, mitochondrial disorder in cardiomyocytes. The detrimental alterations were significantly reversed upon VAC treatment in both septic mice and H9c2 cells exposed to LPS. In vivo experiments demonstrated that VAC treatment alleviated septic myocardial injury, indicated by enhanced cardiac function parameters, preserved cardiac structure, and reduced inflammation/oxidative response. Mechanistically, VAC induced NLRP3 palmitoylation to inactivate NLRP3 inflammasome by acting on zDHHC12. In support, the NLRP3 agonist ATP and the acylation inhibitor 2-bromopalmitate (2-BP) prevented the effects of VAC. CONCLUSION: Our findings suggest that VAC holds promise in protecting against SCM by mitigating cardiac oxidative stress and inflammation via priming NLRP3 palmitoylation and inactivation. These results lay the solid basis for further assessment of the therapeutic potential of VAC against SCM.


Assuntos
Cardiomiopatias , Inflamassomos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sepse , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Cardiomiopatias/tratamento farmacológico , Sepse/tratamento farmacológico , Sepse/complicações , Camundongos , Masculino , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Lipoilação/efeitos dos fármacos , Ratos , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular , Lipopolissacarídeos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Interleucina-1beta/metabolismo , Interleucina-18/metabolismo
12.
Pharmacol Rev ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866561

RESUMO

Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well-known modification intricately associated with the pathogenesis of CMDs This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies including multi-omics, intestinal microflora analysis, organoid and single-cell sequencing techniques are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assesse the current literatures to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. Significance Statement The comprehensive review covers recent developments in H2S biology and pharmacology in CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.

13.
Int J Ophthalmol ; 17(6): 1128-1137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895669

RESUMO

AIM: To figure out whether various atropine dosages may slow the progression of myopia in Chinese kids and teenagers and to determine the optimal atropine concentration for effectively slowing the progression of myopia. METHODS: A systematic search was conducted across the Cochrane Library, PubMed, Web of Science, EMBASE, CNKI, CBM, VIP, and Wanfang database, encompassing literature on slowing progression of myopia with varying atropine concentrations from database inception to January 17, 2024. Data extraction and quality assessment were performed, and a network Meta-analysis was executed using Stata version 14.0 Software. Results were visually represented through graphs. RESULTS: Fourteen papers comprising 2475 cases were included; five different concentrations of atropine solution were used. The network Meta-analysis, along with the surface under the cumulative ranking curve (SUCRA), showed that 1% atropine (100%)>0.05% atropine (74.9%) >0.025% atropine (51.6%)>0.02% atropine (47.9%)>0.01% atropine (25.6%)>control in refraction change and 1% atropine (98.7%)>0.05% atropine (70.4%)>0.02% atropine (61.4%)>0.025% atropine (42%)>0.01% atropine (27.4%)>control in axial length (AL) change. CONCLUSION: In Chinese children and teenagers, the five various concentrations of atropine can reduce the progression of myopia. Although the network Meta-analysis showed that 1% atropine is the best one for controlling refraction and AL change, there is a high incidence of adverse effects with the use of 1% atropine. Therefore, we suggest that 0.05% atropine is optimal for Chinese children to slow myopia progression.

14.
Ultrasonics ; 141: 107338, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723293

RESUMO

Recently, the moiré pattern has attracted lots of attention by superimposing two planar structures of regular geometries, such as two sets of metasurfaces or gratings. Here, we show the experimental investigation of acoustic moiré effect by using twisted bilayer gratings (i.e., one grating twisted with respect to the other). We observed the guided resonance that occurred when the incident ultrasound beam was coupled with the guiding modes in a meta-grating, significantly influencing the reflection and transmission. Tunable guided resonances from the moiré effect with complete ultrasound reflection at different frequencies were further demonstrated in experiments. Combining the measurements of transmission spectra and the Fast Fourier Transform analyses, we reveal the guided resonance frequencies of moiré ultrasonic metasurface can be effectively controlled by adjusting the twisting angle of the bilayer gratings. Our results can be explained in a simplified model based on the band folding theory, providing a reliable prediction on the precise control of ultrasound reflection via the twisting angle adjustment. Our work extends the moiré metasurface from optics into acoustics, which shows more possibilities for the ultrasound beam engineering from the moiré effect and enables the exploration of functional acoustic devices for ultrasound imaging, treatment and diagnosis.

15.
Eur J Pharmacol ; 976: 176696, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38821160

RESUMO

Cichoric acid (CA), a widely utilized polyphenolic compound in medicine, has garnered significant attention due to its potential health benefits. Sepsis-induced acute kidney disease (AKI) is related with an elevated risk of end-stage kidney disease (ESKD). However, it remains unclear whether CA provides protection against septic AKI. The aim of this study is to investigated the protective effect and possible mechanisms of CA against LPS-induced septic AKI. Sepsis-induced AKI was induced in mice through intraperitoneal injection of lipopolysaccharide (LPS), and RAW264.7 macrophages were incubated with LPS. LPS exposure significantly increased the levels of M1 macrophage biomarkers while reducing the levels of M2 macrophage indicators. This was accompanied by the release of inflammatory factors, superoxide anion production, mitochondrial dysfunction, activation of succinate dehydrogenase (SDH), and subsequent succinate formation. Conversely, pretreatment with CA mitigated these abnormalities. CA attenuated hypoxia-inducible factor-1α (HIF-1α)-induced glycolysis by lifting the NAD+/NADH ratio in macrophages. Additionally, CA disrupted the K (lysine) acetyltransferase 2A (KAT2A)/α-tubulin complex, thereby reducing α-tubulin acetylation and subsequently inactivating the NLRP3 inflammasome. Importantly, administration of CA ameliorated LPS-induced renal pathological damage, apoptosis, inflammation, oxidative stress, and disturbances in mitochondrial function in mice. Overall, CA restrained HIF-1α-mediated glycolysis via inactivation of SDH, leading to NLRP3 inflammasome inactivation and the amelioration of sepsis-induced AKI.


Assuntos
Injúria Renal Aguda , Ácidos Cafeicos , Lipopolissacarídeos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sepse , Succinatos , Animais , Sepse/complicações , Sepse/tratamento farmacológico , Camundongos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Masculino , Succinatos/farmacologia , Succinatos/uso terapêutico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células RAW 264.7 , Estresse Oxidativo/efeitos dos fármacos , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Glicólise/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ativação de Macrófagos/efeitos dos fármacos
16.
Circ Res ; 135(1): 93-109, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770649

RESUMO

BACKGROUND: Hyperproliferation of pulmonary arterial smooth muscle cells (PASMCs) and consequent pulmonary vascular remodeling are the crucial pathological features of pulmonary hypertension (PH). Protein methylation has been shown to be critically involved in PASMC proliferation and PH, but the underlying mechanism remains largely unknown. METHODS: PH animal models were generated by treating mice/rats with chronic hypoxia for 4 weeks. SMYD2-vTg mice (vascular smooth muscle cell-specific suppressor of variegation, enhancer of zeste, trithorax and myeloid Nervy DEAF-1 (deformed epidural auto-regulatory factor-1) domain-containing protein 2 transgenic) or wild-type rats and mice treated with LLY-507 (3-cyano-5-{2-[4-[2-(3-methylindol-1-yl)ethyl]piperazin-1-yl]-phenyl}-N-[(3-pyrrolidin-1-yl)propyl]benzamide) were used to investigate the function of SMYD2 (suppressor of variegation, enhancer of zeste, trithorax and myeloid Nervy DEAF-1 domain-containing protein 2) on PH development in vivo. Primary cultured rat PASMCs with SMYD2 knockdown or overexpression were used to explore the effects of SMYD2 on proliferation and to decipher the underlying mechanism. RESULTS: We demonstrated that the expression of the lysine methyltransferase SMYD2 was upregulated in the smooth muscle cells of pulmonary arteries from patients with PH and hypoxia-exposed rats/mice and in the cytoplasm of hypoxia-induced rat PASMCs. More importantly, targeted inhibition of SMYD2 by LLY-507 significantly attenuated hypoxia-induced pulmonary vascular remodeling and PH development in both male and female rats in vivo and reduced rat PASMC hyperproliferation in vitro. In contrast, SMYD2-vTg mice exhibited more severe PH phenotypes and related pathological changes than nontransgenic mice after 4 weeks of chronic hypoxia treatment. Furthermore, SMYD2 overexpression promoted, while SMYD2 knockdown suppressed, the proliferation of rat PASMCs by affecting the cell cycle checkpoint between S and G2 phases. Mechanistically, we revealed that SMYD2 directly interacted with and monomethylated PPARγ (peroxisome proliferator-activated receptor gamma) to inhibit the nuclear translocation and transcriptional activity of PPARγ, which further promoted mitophagy to facilitate PASMC proliferation and PH development. Furthermore, rosiglitazone, a PPARγ agonist, largely abolished the detrimental effects of SMYD2 overexpression on PASMC proliferation and PH. CONCLUSIONS: Our results demonstrated that SMYD2 monomethylates nonhistone PPARγ and inhibits its nuclear translocation and activation to accelerate PASMC proliferation and PH by triggering mitophagy, indicating that targeting SMYD2 or activating PPARγ are potential strategies for the prevention of PH.


Assuntos
Histona-Lisina N-Metiltransferase , Hipertensão Pulmonar , Hipóxia , Mitofagia , Músculo Liso Vascular , Miócitos de Músculo Liso , PPAR gama , Artéria Pulmonar , Ratos Sprague-Dawley , Animais , Humanos , Masculino , Camundongos , Ratos , Proliferação de Células , Células Cultivadas , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/genética , Hipóxia/complicações , Hipóxia/metabolismo , Metilação , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , PPAR gama/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Remodelação Vascular
17.
Food Res Int ; 186: 114317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729709

RESUMO

Lipids play a pivotal role in the nutrition of preterm infants, acting as a primary energy source. Due to their underdeveloped gastrointestinal systems, lipid malabsorption is common, leading to insufficient energy intake and slowed growth. Therefore, it is critical to explore the reasons behind the low lipid absorption rate in formulas for preterm infants. This study utilized a simulated in intro gastrointestinal digestion model to assess the differences in lipid digestion between preterm human milk and various infant formulas. Results showed that the fatty acid release rates for formulas IF3, IF5, and IF7 were 58.90 %, 56.58 %, and 66.71 %, respectively, lower than human milk's 72.31 %. The primary free fatty acids (FFA) and 2-monoacylglycerol (2-MAG) released during digestion were C14:0, C16:0, C18:0, C18:1n-9, and C18:2n-6, in both human milk and formulas. Notably, the higher release of C16:0 in formulas may disrupt fatty acid balance, impacting lipid absorption. Further investigations are necessary to elucidate lipid absorption differences, which will inform the optimization of lipid content in preterm infant formulas.


Assuntos
Digestão , Fórmulas Infantis , Recém-Nascido Prematuro , Leite Humano , Leite Humano/química , Leite Humano/metabolismo , Humanos , Fórmulas Infantis/química , Recém-Nascido , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Lipídeos/análise , Ácidos Graxos não Esterificados/análise , Ácidos Graxos não Esterificados/metabolismo , Metabolismo dos Lipídeos , Trato Gastrointestinal/metabolismo , Modelos Biológicos , Monoglicerídeos/metabolismo , Monoglicerídeos/análise , Gorduras na Dieta/metabolismo , Gorduras na Dieta/análise
18.
Phys Rev Lett ; 132(19): 197202, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38804947

RESUMO

The higher-order topological phases have attracted intense attention in the past years, which reveals various intriguing topological properties. Meanwhile, the enrichment of group symmetries with projective symmetry algebras redefines the fundamentals of topological matter and makes Stiefel-Whitney (SW) classes in classical wave systems possible. Here, we report the experimental realization of higher-order topological nodal loop semimetal in an acoustic system and obtain the inherent SW topological invariants. In stark contrast to higher-order topological semimetals relating to complex vector bundles, the hinge and surface states in the SW topological phase are protected by two distinctive SW topological charges relevant to real vector bundles. Our findings push forward the studies of SW class topology in classical wave systems, which also show possibilities in robust high-Q-resonance-based sensing and energy harvesting.

19.
Nat Commun ; 15(1): 4346, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773182

RESUMO

Narrow bandwidths are a general bottleneck for applications relying on passive, linear, subwavelength resonators. In the past decades, several efforts have been devoted to overcoming this challenge, broadening the bandwidth of small resonators by the means of analog non-Foster matching networks for radiators, antennas and metamaterials. However, most non-Foster approaches present challenges in terms of tunability, stability and power limitations. Here, by tuning a subwavelength acoustic transducer with digital non-Foster-inspired electronics, we demonstrate five-fold bandwidth enhancement compared to conventional analog non-Foster matching. Long-distance transmission over airborne acoustic channels, with approximately three orders of magnitude increase in power level, validates the performance of the proposed approach. We also demonstrate convenient reconfigurability of our non-Foster-inspired electronics. This implementation provides a viable solution to enhance the bandwidth of sub-wavelength resonance-based systems, extendable to the electromagnetic domain, and enables the practical implementation of airborne and underwater acoustic radiators.

20.
World J Gastrointest Surg ; 16(5): 1482-1484, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38817295

RESUMO

This letter to the editor addresses the study titled "Predictive value of NLR, Fib4, and APRI in the occurrence of liver failure after hepatectomy in patients with hepatocellular carcinoma" by Kuang et al in the World Journal of Gastrointestinal Surgery. The study acknowledges the comprehensive patient data analysis while suggesting that there is a need for further discussion on the clinical applicability of these markers across diverse patient populations. This letter recommends prospective studies for validation and considers the influence of confounding factors. This finding underscores the significance of this study in improving hepatocellular carcinoma management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...