Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Adv ; 9(51): eadj1397, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38117877

RESUMO

Neutrophil extracellular traps (NETs) not only counteract bacterial and fungal pathogens but can also promote thrombosis, autoimmunity, and sterile inflammation. The presence of citrullinated histones, generated by the peptidylarginine deiminase 4 (PAD4), is synonymous with NETosis and is considered independent of apoptosis. Mitochondrial- and death receptor-mediated apoptosis promote gasdermin E (GSDME)-dependent calcium mobilization and membrane permeabilization leading to histone H3 citrullination (H3Cit), nuclear DNA extrusion, and cytoplast formation. H3Cit is concentrated at the promoter in bone marrow neutrophils and redistributes in a coordinated process from promoter to intergenic and intronic regions during apoptosis. Loss of GSDME prevents nuclear and plasma membrane disruption of apoptotic neutrophils but prolongs early apoptosis-induced cellular changes to the chromatin and cytoplasmic granules. Apoptotic signaling engages PAD4 in neutrophils, establishing a cellular state that is primed for NETosis, but that occurs only upon membrane disruption by GSDME, thereby redefining the end of life for neutrophils.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Neutrófilos/metabolismo , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Proteína-Arginina Desiminase do Tipo 4/genética , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Armadilhas Extracelulares/genética , Armadilhas Extracelulares/metabolismo , Histonas/metabolismo , Epigênese Genética
3.
Front Immunol ; 14: 1224045, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022639

RESUMO

Purpose: Due to their abundance in the blood, low RNA content, and short lifespan, neutrophils have been classically considered to be one homogenous pool. However, recent work has found that mature neutrophils and neutrophil progenitors are composed of unique subsets exhibiting context-dependent functions. In this study, we ask if neutrophil heterogeneity is associated with melanoma incidence and/or disease stage. Experimental design: Using mass cytometry, we profiled melanoma patient blood for unique cell surface markers among neutrophils. Markers were tested for their predictiveness using flow cytometry data and random forest machine learning. Results: We identified CD79b+ neutrophils (CD3-CD56-CD19-Siglec8-CD203c-CD86LoCD66b+CD79b+) that are normally restricted to the bone marrow in healthy humans but appear in the blood of subjects with early-stage melanoma. Further, we found CD79b+ neutrophils present in tumors of subjects with head and neck cancer. AI-mediated machine learning analysis of neutrophils from subjects with melanoma confirmed that CD79b expression among peripheral blood neutrophils is highly important in identifying melanoma incidence. We noted that CD79b+ neutrophils possessed a neutrophilic appearance but have transcriptional and surface-marker phenotypes reminiscent of B cells. Compared to remaining blood neutrophils, CD79b+ neutrophils are primed for NETosis, express higher levels of antigen presentation-related proteins, and have an increased capacity for phagocytosis. Conclusion: Our work suggests that CD79b+ neutrophils are associated with early-stage melanoma.


Assuntos
Leucemia Linfocítica Crônica de Células B , Melanoma , Humanos , Neutrófilos , Antígenos CD19 , Linfócitos B
4.
Front Immunol ; 14: 1101497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426658

RESUMO

CD8+ T cells drive anti-cancer immunity in response to antigen-presenting cells such as dendritic cells and subpopulations of monocytes and macrophages. While CD14+ classical monocytes modulate CD8+ T cell responses, the contributions of CD16+ nonclassical monocytes to this process remain unclear. Herein we explored the role of nonclassical monocytes in CD8+ T cell activation by utilizing E2-deficient (E2-/-) mice that lack nonclassical monocytes. During early metastatic seeding, modeled by B16F10-OVA cancer cells injected into E2-/- mice, we noted lower CD8+ effector memory and effector T cell frequencies within the lungs as well as in lung-draining mediastinal lymph nodes in the E2-/- mice. Analysis of the myeloid compartment revealed that these changes were associated with depletion of MHC-IIloLy6Clo nonclassical monocytes within these tissues, with little change in other monocyte or macrophage populations. Additionally, nonclassical monocytes preferentially trafficked to primary tumor sites in the lungs, rather than to the lung-draining lymph nodes, and did not cross-present antigen to CD8+ T cells. Examination of the lung microenvironment in E2-/- mice revealed reduced CCL21 expression in endothelial cells, which is chemokine involved in T cell trafficking. Our results highlight the previously unappreciated importance of nonclassical monocytes in shaping the tumor microenvironment via CCL21 production and CD8+ T cell recruitment.


Assuntos
Monócitos , Neoplasias , Camundongos , Animais , Linfócitos T CD8-Positivos , Células Endoteliais , Pulmão , Neoplasias/metabolismo , Microambiente Tumoral
5.
bioRxiv ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36747824

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) causes an acute respiratory distress syndrome (ARDS) that resembles surfactant deficient RDS. Using a novel multi-cell type, human induced pluripotent stem cell (hiPSC)-derived lung organoid (LO) system, validated against primary lung cells, we found that inflammatory cytokine/chemokine production and interferon (IFN) responses are dynamically regulated autonomously within the lung following SARS-CoV-2 infection, an intrinsic defense mechanism mediated by surfactant proteins (SP). Single cell RNA sequencing revealed broad infectability of most lung cell types through canonical (ACE2) and non-canonical (endocytotic) viral entry routes. SARS-CoV-2 triggers rapid apoptosis, impairing viral dissemination. In the absence of surfactant protein B (SP-B), resistance to infection was impaired and cytokine/chemokine production and IFN responses were modulated. Exogenous surfactant, recombinant SP-B, or genomic correction of the SP-B deletion restored resistance to SARS-CoV-2 and improved viability.

6.
EMBO Rep ; 23(11): e54446, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36194627

RESUMO

Sterile inflammation is a central element in liver diseases. The immune response following injurious stimuli involves hepatic infiltration of neutrophils and monocytes. Neutrophils are major effectors of liver inflammation, rapidly recruited to sites of inflammation, and can augment the recruitment of other leukocytes. The NLRP3 inflammasome has been increasingly implicated in severe liver inflammation, fibrosis, and cell death. In this study, the role of NLRP3 activation in neutrophils during liver inflammation and fibrosis was investigated. Mouse models with neutrophil-specific expression of mutant NLRP3 were developed. Mutant mice develop severe liver inflammation and lethal autoinflammation phenocopying mice with a systemic expression of mutant NLRP3. NLRP3 activation in neutrophils leads to a pro-inflammatory cytokine and chemokine profile in the liver, infiltration by neutrophils and macrophages, and an increase in cell death. Furthermore, mutant mice develop liver fibrosis associated with increased expression of pro-fibrogenic genes. Taken together, the present work demonstrates how neutrophils, driven by the NLRP3 inflammasome, coordinate other inflammatory myeloid cells in the liver, and propagate the inflammatory response in the context of inflammation-driven fibrosis.


Assuntos
Hepatite , Inflamassomos , Camundongos , Animais , Inflamassomos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neutrófilos/metabolismo , Hepatite/genética , Fibrose , Inflamação/metabolismo , Interleucina-1beta/metabolismo
7.
Nat Commun ; 13(1): 5529, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130971

RESUMO

Dysregulated secretion in neutrophil leukocytes associates with human inflammatory disease. The exocytosis response to triggering stimuli is sequential; gelatinase granules modulate the initiation of the innate immune response, followed by the release of pro-inflammatory azurophilic granules, requiring stronger stimulation. Exocytosis requires actin depolymerization which is actively counteracted under non-stimulatory conditions. Here we show that the actin nucleator, WASH, is necessary to maintain azurophilic granules in their refractory state by granule actin entrapment and interference with the Rab27a-JFC1 exocytic machinery. On the contrary, gelatinase granules of WASH-deficient neutrophil leukocytes are characterized by decreased Rac1, shortened granule-associated actin comets and impaired exocytosis. Rac1 activation restores exocytosis of these granules. In vivo, WASH deficiency induces exacerbated azurophilic granule exocytosis, inflammation, and decreased survival. WASH deficiency thus differentially impacts neutrophil granule subtypes, impairing exocytosis of granules that mediate the initiation of the neutrophil innate response while exacerbating pro-inflammatory granule secretion.


Assuntos
Actinas , Neutrófilos , Grânulos Citoplasmáticos , Exocitose , Gelatinases , Humanos , Inflamação , Proteínas dos Microfilamentos
8.
J Immunol ; 208(3): 745-752, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35031577

RESUMO

Cystic fibrosis (CF) is an inherited life-threatening disease accompanied by repeated lung infections and multiorgan inflammation that affects tens of thousands of people worldwide. The causative gene, cystic fibrosis transmembrane conductance regulator (CFTR), is mutated in CF patients. CFTR functions in epithelial cells have traditionally been thought to cause the disease symptoms. Recent work has shown an additional defect: monocytes from CF patients show a deficiency in integrin activation and adhesion. Because monocytes play critical roles in controlling infections, defective monocyte function may contribute to CF progression. In this study, we demonstrate that monocytes from CFTRΔF508 mice (CF mice) show defective adhesion under flow. Transplanting CF mice with wild-type (WT) bone marrow after sublethal irradiation replaced most (60-80%) CF monocytes with WT monocytes, significantly improved survival, and reduced inflammation. WT/CF mixed bone marrow chimeras directly demonstrated defective CF monocyte recruitment to the bronchoalveolar lavage and the intestinal lamina propria in vivo. WT mice reconstituted with CF bone marrow also show lethality, suggesting that the CF defect in monocytes is not only necessary but also sufficient to cause disease. We also show that monocyte-specific knockout of CFTR retards weight gains and exacerbates dextran sulfate sodium-induced colitis. Our findings show that providing WT monocytes by bone marrow transfer rescues mortality in CF mice, suggesting that similar approaches may mitigate disease in CF patients.


Assuntos
Adesão Celular/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/terapia , Monócitos/imunologia , Monócitos/transplante , Animais , Transplante de Medula Óssea , Líquido da Lavagem Broncoalveolar/citologia , Colite/patologia , Fibrose Cística/patologia , Integrinas/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C57BL
9.
Sci Adv ; 7(34)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34407940

RESUMO

Novel coronavirus disease 2019 (COVID-19) severity is highly variable, with pediatric patients typically experiencing less severe infection than adults and especially the elderly. The basis for this difference is unclear. We find that mRNA and protein expression of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, increases with advancing age in distal lung epithelial cells. However, in humans, ACE2 expression exhibits high levels of intra- and interindividual heterogeneity. Further, cells infected with SARS-CoV-2 experience endoplasmic reticulum stress, triggering an unfolded protein response and caspase-mediated apoptosis, a natural host defense system that halts virion production. Apoptosis of infected cells can be selectively induced by treatment with apoptosis-modulating BH3 mimetic drugs. Notably, epithelial cells within young lungs and airways are more primed to undergo apoptosis than those in adults, which may naturally hinder virion production and support milder COVID-19 severity.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Apoptose/genética , COVID-19/genética , Perfilação da Expressão Gênica/métodos , Fatores Etários , Idoso , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , COVID-19/virologia , Células Cultivadas , Chlorocebus aethiops , Feminino , Humanos , Lactente , Pulmão/citologia , Pulmão/metabolismo , Pulmão/virologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Células Vero , Internalização do Vírus
10.
J Leukoc Biol ; 110(4): 629-649, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34085299

RESUMO

Despite the important function of neutrophils in the eradication of infections and induction of inflammation, the molecular mechanisms regulating the activation and termination of the neutrophil immune response is not well understood. Here, the function of the small GTPase from the RGK family, Gem, is characterized as a negative regulator of the NADPH oxidase through autophagy regulation. Gem knockout (Gem KO) neutrophils show increased NADPH oxidase activation and increased production of extracellular and intracellular reactive oxygen species (ROS). Enhanced ROS production in Gem KO neutrophils was associated with increased NADPH oxidase complex-assembly as determined by quantitative super-resolution microscopy, but normal exocytosis of gelatinase and azurophilic granules. Gem-deficiency was associated with increased basal autophagosomes and autolysosome numbers but decreased autophagic flux under phorbol ester-induced conditions. Neutrophil stimulation triggered the localization of the NADPH oxidase subunits p22phox and p47phox at LC3-positive structures suggesting that the assembled NADPH oxidase complex is recruited to autophagosomes, which was significantly increased in Gem KO neutrophils. Prevention of new autophagosome formation by treatment with SAR405 increased ROS production while induction of autophagy by Torin-1 decreased ROS production in Gem KO neutrophils, and also in wild-type neutrophils, suggesting that macroautophagy contributes to the termination of NADPH oxidase activity. Autophagy inhibition decreased NETs formation independently of enhanced ROS production. NETs production, which was significantly increased in Gem-deficient neutrophils, was decreased by inhibition of both autophagy and calmodulin, a known GEM interactor. Intracellular ROS production was increased in Gem KO neutrophils challenged with live Gram-negative bacteria Pseudomonas aeruginosa or Salmonella Typhimurium, but phagocytosis was not affected in Gem-deficient cells. In vivo analysis in a model of Salmonella Typhimurium infection indicates that Gem-deficiency provides a genetic advantage manifested as a moderate increased in survival to infections. Altogether, the data suggest that Gem-deficiency leads to the enhancement of the neutrophil innate immune response by increasing NADPH oxidase assembly and NETs production and that macroautophagy differentially regulates ROS and NETs in neutrophils.


Assuntos
Armadilhas Extracelulares/metabolismo , Macroautofagia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , NADPH Oxidases/metabolismo , Animais , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Calmodulina/metabolismo , Modelos Animais de Doenças , Espaço Intracelular/metabolismo , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/deficiência , Ativação de Neutrófilo , Neutrófilos/metabolismo , Neutrófilos/ultraestrutura , Pseudomonas aeruginosa/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Salmonelose Animal/microbiologia , Salmonelose Animal/patologia , Salmonella typhimurium/fisiologia
11.
J Immunother Cancer ; 8(2)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32912924

RESUMO

BACKGROUND: Understanding neutrophil heterogeneity and its relationship to disease progression has become a recent focus of cancer research. Indeed, several studies have identified neutrophil subpopulations associated with protumoral or antitumoral functions. However, this work has been hindered by a lack of widely accepted markers with which to define neutrophil subpopulations. METHODS: To identify markers of neutrophil heterogeneity in cancer, we used single-cell cytometry by time-of-flight (CyTOF) coupled with high-dimensional analysis on blood samples from treatment-naïve patients with melanoma. RESULTS: Our efforts allowed us to identify seven blood neutrophil clusters, including two previously identified individual populations. Interrogation of these neutrophil subpopulations revealed a positive trend between specific clusters and disease stage. Finally, we recapitulated these seven blood neutrophil populations via flow cytometry and found that they exhibited diverse capacities for phagocytosis and reactive oxygen species production in vitro. CONCLUSIONS: Our data provide a refined consensus on neutrophil heterogeneity markers, enabling a prospective functional evaluation in patients with solid tumors.


Assuntos
Citometria de Fluxo/métodos , Melanoma/sangue , Neutrófilos/metabolismo , Fenótipo , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Adulto Jovem
12.
Immunity ; 53(2): 319-334.e6, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814027

RESUMO

Neutrophils are the most abundant peripheral immune cells and thus, are continually replenished by bone marrow-derived progenitors. Still, how newly identified neutrophil subsets fit into the bone marrow neutrophil lineage remains unclear. Here, we use mass cytometry to show that two recently defined human neutrophil progenitor populations contain a homogeneous progenitor subset we term "early neutrophil progenitors" (eNePs) (Lin-CD66b+CD117+CD71+). Surface marker- and RNA-expression analyses, together with in vitro colony formation and in vivo adoptive humanized mouse transfers, indicate that eNePs are the earliest human neutrophil progenitors. Furthermore, we identified CD71 as a marker associated with the earliest neutrophil developmental stages. Expression of CD71 marks proliferating neutrophils, which were expanded in the blood of melanoma patients and detectable in blood and tumors from lung cancer patients. In summary, we establish CD117+CD71+ eNeP as the inceptive human neutrophil progenitor and propose a refined model of the neutrophil developmental lineage in bone marrow.


Assuntos
Antígenos CD/metabolismo , Células da Medula Óssea/citologia , Células Progenitoras Mieloides/metabolismo , Neutrófilos/citologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores da Transferrina/metabolismo , Transferência Adotiva , Animais , Medula Óssea/metabolismo , Linhagem da Célula , Humanos , Masculino , Melanoma/sangue , Camundongos , Camundongos Endogâmicos NOD , Células Progenitoras Mieloides/citologia
13.
J Leukoc Biol ; 107(6): 883-892, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32386455

RESUMO

Nonclassical monocytes maintain vascular homeostasis by patrolling the vascular endothelium, responding to inflammatory signals, and scavenging cellular debris. Nonclassical monocytes also prevent metastatic tumor cells from seeding new tissues, but whether the patrolling function of nonclassical monocytes is required for this process is unknown. To answer this question, we utilized an inducible-knockout mouse that exhibits loss of the integrin-adaptor protein Kindlin-3 specifically in nonclassical monocytes. We show that Kindlin-3-deficient nonclassical monocytes are unable to patrol the vascular endothelium in either the lungs or periphery. We also find that Kindlin-3-deficient nonclassical monocytes cannot firmly adhere to, and instead "slip" along, the vascular endothelium. Loss of patrolling activity by nonclassical monocytes was phenocopied by ablation of LFA-1, an integrin-binding partner of Kindlin-3. When B16F10 murine melanoma tumor cells were introduced into Kindlin-3-deficient mice, nonclassical monocytes showed defective patrolling towards tumor cells and failure to ingest tumor particles in vivo. Consequently, we observed a significant, 4-fold increase in lung tumor metastases in mice possessing Kindlin-3-deficient nonclassical monocytes. Thus, we conclude that the patrolling function of nonclassical monocytes is mediated by Kindlin-3 and essential for these cells to maintain vascular endothelial homeostasis and prevent tumor metastasis to the lung.


Assuntos
Proteínas do Citoesqueleto/genética , Regulação Neoplásica da Expressão Gênica , Antígeno-1 Associado à Função Linfocitária/genética , Melanoma Experimental/genética , Monócitos/imunologia , Fagocitose , Neoplasias Cutâneas/genética , Animais , Medula Óssea/imunologia , Transplante de Medula Óssea , Adesão Celular , Comunicação Celular/imunologia , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/imunologia , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Feminino , Humanos , Injeções Intravenosas , Pulmão/irrigação sanguínea , Pulmão/imunologia , Pulmão/patologia , Antígeno-1 Associado à Função Linfocitária/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/secundário , Camundongos , Camundongos Knockout , Monócitos/patologia , Células Neoplásicas Circulantes/imunologia , Células Neoplásicas Circulantes/patologia , Cultura Primária de Células , Transdução de Sinais , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Irradiação Corporal Total
14.
J Immunol ; 204(1): 192-198, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31767784

RESUMO

The role of nonclassical, patrolling monocytes in lung tumor metastasis and their functional relationships with other immune cells remain poorly defined. Contributing to these gaps in knowledge is a lack of cellular specificity in commonly used approaches for depleting nonclassical monocytes. To circumvent these limitations and study the role of patrolling monocytes in melanoma metastasis to lungs, we generated C57BL/6J mice in which the Nr4a1 superenhancer E2 subdomain is ablated (E2 -/- mice). E2 -/- mice lack nonclassical patrolling monocytes but preserve classical monocyte and macrophage numbers and functions. Interestingly, NK cell recruitment and activation were impaired, and metastatic burden was increased in E2 -/-mice. E2 -/- mice displayed unchanged "educated" (CD11b+CD27+) and "terminally differentiated" (CD11b+CD27-) NK cell frequencies. These perturbations were accompanied by reduced expression of stimulatory receptor Ly49D on educated NK cells and increased expression of inhibitory receptor NKG2A/CD94 on terminally differentiated NK cells. Thus, our work demonstrates that patrolling monocytes play a critical role in preventing lung tumor metastasis via NK cell recruitment and activation.


Assuntos
Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Monócitos/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Animais , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
J Vis Exp ; (148)2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31282876

RESUMO

In this article, we present a protocol that is optimized to preserve neutrophil-lineage cells in fresh BM for whole BM CyTOF analysis. We utilized a myeloid-biased 39-antibody CyTOF panel to evaluate the hematopoietic system with a focus on the neutrophil-lineage cells by using this protocol. The CyTOF result was analyzed with an open-resource dimensional reduction algorithm, viSNE, and the data was presented to demonstrate the outcome of this protocol. We have discovered new neutrophil-lineage cell populations based on this protocol. This protocol of fresh whole BM preparation may be used for 1), CyTOF analysis to discover unidentified cell populations from whole BM, 2), investigating whole BM defects for patients with blood disorders such as leukemia, 3), assisting optimization of fluorescence-activated flow cytometry protocols that utilize fresh whole BM.


Assuntos
Células da Medula Óssea/citologia , Citometria de Fluxo/métodos , Espectrometria de Massas/métodos , Neutrófilos/citologia , Biomarcadores/metabolismo , Medula Óssea/fisiologia , Células da Medula Óssea/metabolismo , Linhagem da Célula , Humanos , Células Mieloides/metabolismo , Neutrófilos/metabolismo
16.
Cell Rep ; 24(9): 2329-2341.e8, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30157427

RESUMO

Neutrophils are short-lived cells that play important roles in both health and disease. Neutrophils and monocytes originate from the granulocyte monocyte progenitor (GMP) in bone marrow; however, unipotent neutrophil progenitors are not well defined. Here, we use cytometry by time of flight (CyTOF) and single-cell RNA sequencing (scRNA-seq) methodologies to identify a committed unipotent early-stage neutrophil progenitor (NeP) in adult mouse bone marrow. Importantly, we found a similar unipotent NeP (hNeP) in human bone marrow. Both NeP and hNeP generate only neutrophils. NeP and hNeP both significantly increase tumor growth when transferred into murine cancer models, including a humanized mouse model. hNeP are present in the blood of treatment-naive melanoma patients but not of healthy subjects. hNeP can be readily identified by flow cytometry and could be used as a biomarker for early cancer discovery. Understanding the biology of hNeP should allow the development of new therapeutic targets for neutrophil-related diseases, including cancer.


Assuntos
Medula Óssea/metabolismo , Neutrófilos/metabolismo , Células-Tronco/metabolismo , Animais , Humanos , Camundongos
18.
Arterioscler Thromb Vasc Biol ; 36(9): 1722-33, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27386937

RESUMO

Monocytes and macrophages are key immune cells involved in the early progression of atherosclerosis. Transcription factors that control their development in the bone marrow are important therapeutic targets to control the numbers and functions of these cells in disease. This review highlights what is currently known about the transcription factors that are critical for monocyte development.


Assuntos
Células da Medula Óssea/fisiologia , Diferenciação Celular , Monócitos/fisiologia , Transcrição Gênica , Animais , Células da Medula Óssea/classificação , Células da Medula Óssea/imunologia , Microambiente Celular , Regulação da Expressão Gênica , Genótipo , Hematopoese Extramedular , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Monócitos/classificação , Monócitos/imunologia , Mielopoese , Fenótipo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
J Immunol ; 194(2): 584-94, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25512602

RESUMO

AMP-activated protein kinase (AMPK) is a conserved serine/threonine kinase with a critical function in the regulation of metabolic pathways in eukaryotic cells. Recently, AMPK has been shown to play an additional role as a regulator of inflammatory activity in leukocytes. Treatment of macrophages with chemical AMPK activators, or forced expression of a constitutively active form of AMPK, results in polarization to an anti-inflammatory phenotype. In addition, we reported previously that stimulation of macrophages with anti-inflammatory cytokines such as IL-10, IL-4, and TGF-ß results in rapid activation of AMPK, suggesting that AMPK contributes to the suppressive function of these cytokines. In this study, we investigated the role of AMPK in IL-10-induced gene expression and anti-inflammatory function. IL-10-stimulated wild-type macrophages displayed rapid activation of PI3K and its downstream targets Akt and mammalian target of rapamycin complex (mTORC1), an effect that was not seen in macrophages generated from AMPKα1-deficient mice. AMPK activation was not impacted by treatment with either the PI3K inhibitor LY294002 or the JAK inhibitor CP-690550, suggesting that IL-10-mediated activation of AMPK is independent of PI3K and JAK activity. IL-10 induced phosphorylation of both Tyr(705) and Ser(727) residues of STAT3 in an AMPKα1-dependent manner, and these phosphorylation events were blocked by inhibition of Ca(2+)/calmodulin-dependent protein kinase kinase ß, an upstream activator of AMPK, and by the mTORC1 inhibitor rapamycin, respectively. The impaired STAT3 phosphorylation in response to IL-10 observed in AMPKα1-deficient macrophages was accompanied by reduced suppressor of cytokine signaling 3 expression and an inadequacy of IL-10 to suppress LPS-induced proinflammatory cytokine production. Overall, our data demonstrate that AMPKα1 is required for IL-10 activation of the PI3K/Akt/mTORC1 and STAT3-mediated anti-inflammatory pathways regulating macrophage functional polarization.


Assuntos
Proteínas Quinases Ativadas por AMP/imunologia , Interleucina-10/imunologia , Macrófagos/imunologia , Transdução de Sinais/imunologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-10/genética , Interleucina-4/genética , Interleucina-4/imunologia , Lipopolissacarídeos/toxicidade , Macrófagos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Fosforilação/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...