Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phytomedicine ; 98: 153914, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35104755

RESUMO

BACKGROUND: Dysregulation in gut microbiota and host cometabolome contributes to the complicated pathology of ulcerative colitis (UC), while Zuo-Jin-Wan (ZJW), a traditional Chinese medicine has shown therapeutic effects against UC with its underlying mechanism remains elusive. PURPOSE: This study utilized an integrated analysis combining gut microbiome and host cometabolism to disclose the potential therapeutic mechanism of ZJW on dextran sulfate sodium (DSS)-induced UC in rats. METHODS: We first evaluated the therapeutic effects of ZJW treatment in DSS-induced rat model. 16S rRNA sequencing, 1H NMR spectroscopy-based metabolomics and Spearman correlation analysis were conducted to explore the potential therapeutic mechanism during the treatment. RESULTS: Our results showed that UC symptoms in ZJW rats were significantly attenuated. Marked decline in microbial diversity in ZJW group was accompanied by its correspondent function adjustment. Specific enrichment of genus Bacteroides, Sutterella, Akkermansia and Roseburia along with the major varying amino acid metabolism and lipid metabolism were observed meantime. Metabolic data further corroborated that ZJW-related metabolic changes were basically gathered in amino acid metabolism, carbohydrate/energy metabolism and lipid metabolism. Of note, some biochemical parameters were deeply implicated with the discriminative microbial genera and metabolites involved in tricarboxylic acid (TCA) cycle and amino acid metabolism, indicating the microbiome-metabolome association in gut microbiota-metabolite-phenotype axis during UC treatment of ZJW. CONCLUSION: For the first time, integrated microbiome-metabolome analysis depicted that ZJW could alleviate DSS-induced UC in rats via a crosstalk between gut microbiota and host cometabolites.

2.
Mar Biotechnol (NY) ; 24(1): 203-215, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35175461

RESUMO

Previous studies on the soft coral Lobophytum sarcophytoides (Lobophytum sp.) are mainly about small molecules, and there has been no systematic research on polysaccharides. In the study, a novel polysaccharide (LCPs-1-A) with immunoenhancing functions was successfully extracted and purified from the soft coral Lobophytum sp. After preliminary analysis, our data indicated that LCPs-1-A was composed of glucose and had a molecular weight of 4.90 × 106 Da. Moreover, our findings showed that LCPs-1-A could promote the proliferation and phagocytosis of RAW264.7 cells, stimulate the production of NO and ROS, and increase the mRNA expression of IL-1ß, IL-6, and TNF-α, which indicated that LCPs-1-A had a good immunoenhancing activity. Through further studies, we found that LCPs-1-A might play an immunoenhancing role through the TLR4/NF-κB signaling pathway. Therefore, our results demonstrated that LCPs-1-A might be a natural immunostimulant for use in medical and food industries.


Assuntos
Antozoários , Animais , Antozoários/metabolismo , Camundongos , NF-kappa B/metabolismo , Polissacarídeos/química , Polissacarídeos/farmacologia , Células RAW 264.7 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...