Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 130: 155544, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38810554

RESUMO

BACKGROUND: Psoriasis is a chronic immune-mediated inflammatory skin disease that affects the quality of life and mental health of approximately 150 million people worldwide. Ze-Qi-Tang (ZQT) is a classic compound used in China for lung disease; however, its mechanism of action in psoriasis remains unclear. This study aimed to investigate the therapeutic effect of the ZQT formula on psoriasis and explore the underlying molecular mechanisms. METHODS: Peripheral blood samples were collected from patients with psoriasis and healthy individuals. Flow cytometry was used to detect changes in the proportions of myeloid-derived suppressor cells (MDSCs) and other immune cells. Psoriasis was induced in mice by the daily application of imiquimod. ZQT was administered separately or in combination with anti-Gr1 antibody to deplete MDSC. The glycolysis levels of the MDSCs were detected using a Seahorse analyzer. The p21/Hif1α/Glut1 pathway was identified and validated by mRNA sequence, RT-qPCR, WB, IF, and the application of p21 inhibitor UC2288. RESULTS: The number of MDSCs was significantly increased in patients with psoriasis, with the increased expression of p21, Hif1α, and Glut1 in MDSCs. ZQT significantly alleviated psoriasis-like skin lesions in mice. ZQT formula significantly reduced the number of MDSCs in psoriatic-like mice and enhanced their suppressive capacity for T cells. The efficacy of ZQT in alleviating psoriatic dermatitis is compromised by MDSC depletion. ZQT decreased the expressions of p21, Hif1α, and Glut1-induced glycolysis in MDSCs, thereby inhibiting Th17 cell differentiation. CONCLUSION: These suggest that ZQT alleviates IMQ-induced psoriatic dermatitis, by inhibiting p21/Hif1α/Glut1-induced glycolysis in MDSCs.


Assuntos
Regulação para Baixo , Medicamentos de Ervas Chinesas , Transportador de Glucose Tipo 1 , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , Células Supressoras Mieloides , Psoríase , Animais , Psoríase/tratamento farmacológico , Transportador de Glucose Tipo 1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Glicólise/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Camundongos , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/metabolismo , Masculino , Regulação para Baixo/efeitos dos fármacos , Feminino , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Adulto , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Imiquimode , Pessoa de Meia-Idade
2.
J Exp Clin Cancer Res ; 43(1): 129, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38685125

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) hold immense promise in guiding treatment strategies for advanced gastric cancer (GC). However, their clinical impact has been limited due to challenges in identifying epithelial-mesenchymal transition (EMT)-CTCs using conventional methods. METHODS: To bridge this knowledge gap, we established a detection platform for CTCs based on the distinctive biomarker cell surface vimentin (CSV). A prospective study involving 127 GC patients was conducted, comparing CTCs enumeration using both EpCAM and CSV. This approach enabled the detection of both regular and EMT-CTCs, providing a comprehensive analysis. Spiking assays and WES were employed to verify the reliability of this marker and technique. To explore the potential inducer of CSV+CTCs formation, a combination of Tandem Mass Tag (TMT) quantitative proteomics, m6A RNA immunoprecipitation-qPCR (MeRIP-qPCR), single-base elongation- and ligation-based qPCR amplification method (SELECT) and RNA sequencing (RNA-seq) were utilized to screen and confirm the potential target gene. Both in vitro and in vivo experiments were performed to explore the molecular mechanism of CSV expression regulation and its role in GC metastasis. RESULTS: Our findings revealed the potential of CSV in predicting therapeutic responses and long-term prognosis for advanced GC patients. Additionally, compared to the conventional EpCAM-based CTCs detection method, the CSV-specific positive selection CTCs assay was significantly better for evaluating the therapeutic response and prognosis in advanced GC patients and successfully predicted disease progression 14.25 months earlier than radiology evaluation. Apart from its excellent role as a detection marker, CSV emerges as a promising therapeutic target for attenuating GC metastasis. It was found that fat mass and obesity associated protein (FTO) could act as a potential catalyst for CSV+CTCs formation, and its impact on the insulin-like growth factor-I receptor (IGF-IR) mRNA decay through m6A modification. The activation of IGF-I/IGF-IR signaling enhanced the translocation of vimentin from the cytoplasm to the cell surface through phosphorylation of vimentin at serine 39 (S39). In a GC mouse model, the simultaneous inhibition of CSV and blockade of the IGF-IR pathway yielded promising outcomes. CONCLUSION: In summary, leveraging CSV as a universal CTCs marker represents a significant breakthrough in advancing personalized medicine for patients with advanced GC. This research not only paves the way for tailored therapeutic strategies but also underscores the pivotal role of CSV in enhancing GC management, opening new frontiers for precision medicine.


Assuntos
Biomarcadores Tumorais , Células Neoplásicas Circulantes , Neoplasias Gástricas , Vimentina , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Estudos Prospectivos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Vimentina/metabolismo
4.
Int Immunopharmacol ; 123: 110710, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37531829

RESUMO

BACKGROUND: Psoriasis is a chronic and incurable skin disorder that causes inflammation. There is an urgent clinical need for new treatments. We identified the natural compound indirubin as a potential potent agent for the treatment of psoriasis, but it's therapeutic effect and underlying mechanisms were not well understood. METHODS: Peripheral blood and skin tissues from psoriasis patients and healthy individuals were collected. Bioinformatics analysis was performed to investigate LAT1 expression and associated signal pathways in psoriasis skin lesions. A mouse model of psoriasis was established. Indirubin was administered separately or in combination with MDSCs depletion or adoptively transferred MDSCs. JPH203, rapamycin, siRNA, and NV5138 were further used to investigate the potential mechanism by which indirubin regulates MDSCs. RESULTS: Psoriasis patients had increased numbers of MDSCs in their blood and skin lesions, with high expression of Lat1. The upregulation of LAT1 expression and the arginine synthesis pathway was observed in psoriasis skin lesions. The number of MDSCs was increased, while their inhibitory effect on psoriatic T cells was decreased. Indirubin decreased Lat1 expression on the surface of MDSCs, inhibited mTOR pathway activation, upregulated Arg1 expression in MDSCs, and enhanced the immunosuppressive activity of MDSCs while inhibiting CD4+CCR6+ T cells. CONCLUSION: This study demonstrates indirubin's pharmacological and therapeutic effects, providing a basis for future clinical application in treating psoriasis.


Assuntos
Células Supressoras Mieloides , Psoríase , Camundongos , Animais , Humanos , Células Supressoras Mieloides/metabolismo , Regulação para Cima , Psoríase/patologia , Pele/patologia , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Imunossupressores/metabolismo
5.
J Ethnopharmacol ; 313: 116491, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37072091

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine (TCM) Tian-Men-Dong decoction (TD) has been able to effectively treat lung cancer in China for thousands of years. TD improves the quality of life in lung cancer patients by promoting nourishment of yin and reducing dryness, clearing the lung and removing toxins. Pharmacological studies show that TD contains active antitumour ingredients, but its underlying mechanism remains unknown. AIM OF THE STUDY: This study aims at exploring potential mechanisms of TD in the treatment of lung cancer by regulating granulocytic-myeloid-derived suppressor cells (G-MDSCs). MATERIALS AND METHODS: An orthotopic lung cancer mouse model was generated by intrapulmonary injection with LLC-luciferase cells in immunocompetent C57BL/6 mice or immunodeficient nude mice. TD/saline was orally administered once to the model mice daily for 4 weeks. Live imaging was conducted to monitor tumour growth. Immune profiles were detected by flow cytometry. H&E and ELISA were applied to test the cytotoxicity of the TD treatment. RT-qPCR and western blotting were performed to detect apoptosis-related proteins in G-MDSCs. A neutralizing antibody (anti-Ly6G) was utilized to exhaust the G-MDSCs via intraperitoneal injection. G-MDSCs were adoptively transferred from wild-type tumour-bearing mice. Immunofluorescence, TUNEL and Annexin V/PI staining were conducted to analyse apoptosis-related markers. A coculture assay of purified MDSCs and T cells labelled with CFSE was performed to test the immunosuppressive activity of MDSCs. The presence of TD/IL-1ß/TD + IL-1ß in purified G-MDSCs cocultured with the LLC system was used for ex vivo experiments to detect IL-1ß-mediated apoptosis of G-MDSCs. RESULTS: TD prolonged the survival of immune competent C57BL/6 mice in an orthotopic lung cancer model, but did not have the same effect in immunodeficient nude mice, indicating that its antitumour properties of TD are exerted by regulating immunity. TD induced G-MDSC apoptosis via the IL-1ß-mediated NF-κB signalling cascade leading to effectively weaken the immunosuppressive activity of G-MDSCs and promote CD8+ T-cell infiltration, which was supported by both the depletion and adoptive transfer of G-MDSCs assays. In addition, TD also showed minimal cytotoxicity both in vivo and in vitro. CONCLUSION: This study reveals for the first time that TD, a classic TCM prescription, is able to regulate G-MDSC activity and trigger its apoptosis via the IL-1ß-mediated NF-κB signalling pathway, reshaping the tumour microenvironment and demonstrating antitumour effects. These findings provide a scientific foundation the clinical treatment of lung cancer with TD.


Assuntos
Neoplasias Pulmonares , Células Supressoras Mieloides , Camundongos , Animais , Camundongos Nus , NF-kappa B/metabolismo , Qualidade de Vida , Camundongos Endogâmicos C57BL , Neoplasias Pulmonares/metabolismo , Imunossupressores/farmacologia , Microambiente Tumoral
6.
Int J Biol Sci ; 18(7): 2759-2774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35541911

RESUMO

The current performance of nature compounds in antitumor field is gradually attracted more and more attention, we discovered a nature active ingredient alizarin possess potent natural reductive NF-κB activity to against pancreatic cancer. However, the preclinical pharmacology and therapeutic effect, and the underlying mechanisms of alizarin in inhibiting pancreatic cancer are still unclear. After high-throughput screening, this is the first report that alizarin can induce a potent inhibitory effect against pancreatic cancer cells. Alizarin induced cell cycle arrest and promoted cell apoptosis by inhibiting TNF-α-stimulated NF-κB activity and nuclear translocation, and inactivated its related TNF-α-TAK1-NF-κB signaling cascade followed by downregulation of NF-κB target genes involved in cell apoptosis (Bcl-2, Bcl-xL, XIAP) and in the cell cycle and growth (cyclin D, c-myc). Due to the abrogation of NF-κB activity, combination of alizarin and gemcitabine exerted a better inhibitory effect on pancreatic cancer. In summary, natural component alizarin, inhibited cell proliferation and induced apoptosis in vitro and in vivo through targeting of the NF-κB signaling cascade with minimal toxicity, which combine with gemcitabine, can significantly enhance the antitumor capability, playing a synergistic effect. Therefore, alizarin may play a role in reversing gemcitabine resistance caused by overactivated NF-κB in clinical application in the future.


Assuntos
NF-kappa B , Neoplasias Pancreáticas , Antraquinonas , Apoptose , Linhagem Celular Tumoral , Humanos , NF-kappa B/metabolismo , Neoplasias Pancreáticas/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
7.
Mediators Inflamm ; 2021: 8856326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867859

RESUMO

Non-small-cell lung cancer (NSCLC) remains the most common malignancy with the highest morbidity and mortality worldwide. In our previous study, we found that a classic traditional Chinese medicine (TCM) formula Ze-Qi-Tang (ZQT), which has been used in the treatment of respiratory diseases for thousands of years, could directly inhibit the growth of human NSCLC cells via the p53 signaling pathway. In this study, we explored the immunomodulatory functions of ZQT. We found that ZQT significantly prolonged the survival of orthotopic lung cancer model mice by modulating the tumor microenvironment (TME). ZQT remarkably reduced the number of MDSCs (especially G-MDSCs) and inhibited their immunosuppressive activity by inducing apoptosis in these cells via the STAT3/S100A9/Bcl-2/caspase-3 signaling pathway. When G-MDSCs were depleted, the survival promotion effect of ZQT and its inhibitory effect on lung luminescence signal disappeared in tumor-bearing mice. This is the first study to illustrate the immunomodulatory effect of ZQT in NSCLC and the underlying molecular mechanism.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Granulócitos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Medicina Tradicional Chinesa , Células Supressoras Mieloides/efeitos dos fármacos , Animais , Calgranulina B/fisiologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Caspase 3/fisiologia , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/uso terapêutico , Granulócitos/patologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/patologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral
8.
Cancer Lett ; 493: 167-177, 2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-32829007

RESUMO

Non-small cell lung cancer (NSCLC) accounts for more than 85% of lung cancer with high incidence and mortality. Accumulating studies have shown that traditional Chinese medicine (TCM) and its active ingredients have good anti-tumor activity. However, the anti-tumor effect of Thevebioside (THB), an active ingredient from TCM, is still unknown in NSCLC. In this study, to our best knowledge, it was the first time to report the underlying mechanism of its tumor-suppressive activity in NSCLC based on our previous high-throughput screening data. We further demonstrated that THB effectively inhibited the proliferation of NSCLC cells (A549 and H460) by inducing cellular apoptosis rather than cell cycle arrest. Notably, it was demonstrated that SRC-3 was significantly down-regulated after THB treatment dependent on ubiquitin-proteasome-mediated degradation, which subsequently inhibited the IGF-1R-PI3K-AKT signaling pathway and promoted apoptosis via both in vivo and in vitro experiments. Collectively, THB exerted inhibitory effect on tumor growth of NSCLC through inhibiting SRC-3 mediated IGF-1R-PI3K-AKT signaling by ubiquitination to induce cellular apoptosis with minimal toxicity no matter in vitro or vivo.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Medicamentos de Ervas Chinesas/química , Glicosídeos/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Coativador 3 de Receptor Nuclear/química , Thevetia/química , Ubiquitina/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicosídeos/química , Glicosídeos/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Proteólise/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Pharm Biol ; 58(1): 357-366, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32356467

RESUMO

Context: Natural killer (NK) cells can eliminate malignant cells and play a vital role in immunosurveillance. Administration of natural compounds represents a promising approach for antitumor immunotherapy, which may enhance the NK cell activity via multiple mechanisms.Objective: Establishing approaches to evaluate the effect of select natural products on NK cell-mediated cytotoxicity.Materials and methods: We selected a natural product library containing 2880 pure compounds, which was provided by the National Centre for Drug Screening of China. 0.1% DMSO was employed as a negative control, and 100 U/mL human recombinant IL-2 was employed as a positive control. To evaluate the % of tumour cells which were killed by NK cells, expanded NK cells were co-cultured with tumour cells and then treated with natural products at the concentration of 10 µM. After 24-h co-incubation, luminescent signal was detected and percent lysis was calculated.Results: We report on the results of a three-round high-throughput screening effort that identified 20-deoxyingenol 3-angelate (DI3A) and its analogue ingenol 3-angelate (I3A) as immuno enhancers which boosts NK cell-mediated killing of non-small cell lung cancer cells (NSCLCs). Biophotonic cytotoxicity assay and calcein release assay were used as two well-established NK cell cytotoxicity detection assays to validate the immuno-enhancing effects of DI3A and I3A, which was achieved by increasing degranulation and interferon-gamma secretion of NK cells.Conclusions: Our newly established ATP-based method was a valuable and information-rich screening tool to investigate the biological effects of natural products on both NK cells and tumour cells.


Assuntos
Produtos Biológicos/toxicidade , Ensaios de Triagem em Larga Escala/métodos , Células Matadoras Naturais/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Humanos , Interleucina-2/imunologia , Interleucina-2/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo
10.
Front Neurosci ; 14: 596780, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33633527

RESUMO

BACKGROUND AND PURPOSE: Neuropathic pain is the typical symptom of brachial plexus root avulsion (BPRA), and no effective therapy is currently available. Electroacupuncture (EA), as a complementary and alternative therapy, plays a critical role in the management of pain-associated diseases. In the present study, we aimed to reveal the peripheral immunological mechanism of EA in relieving the pain of BPRA through the IL-17-CD4+ T lymphocyte-ß-endorphin axis. METHODS: After receiving repeated EA treatment, the pain of BPRA in rats along with the expressions of a range of neurotransmitters, the contents of inflammatory cytokines, and the population of lymphocytes associated were investigated. CD4+ T lymphocytes were either isolated or depleted with anti-CD4 monoclonal antibody. The titers of IL-17A, interferon-γ (IFN-γ), and ß-endorphin were examined. The markers of T lymphocytes, myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), macrophages, and natural killer (NK) cells were assessed. The activation of the nuclear transcription factor κB (NF-κB) signaling pathway was tested. RESULTS: The pain of BPRA was significantly relieved, and the amount of CD4+ T lymphocytes was increased after EA treatment. The release of ß-endorphin was up-regulated with the up-regulation of IL-17A in CD4+ T lymphocytes. The titer of IL-17A was enhanced, leading to an activated NF-κB signaling pathway. The release of ß-endorphin and the analgesic effect were almost completely abolished when CD4+ T lymphocytes were depleted. CONCLUSION: We, for the first time, showed that the neuropathic pain caused by BPRA was effectively relieved by EA treatment via IL-17-CD4+ T lymphocyte-ß-endorphin mediated peripheral analgesic effect, providing scientific support for EA clinical application.

11.
J Ethnopharmacol ; 234: 180-188, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30660711

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ze-Qi-Tang (ZQT), a classic Chinese herbal formula, has been for over thousand years used for the treatment of several respiratory ailments like cough, asthma, hydrothorax and lung cancer. AIM OF STUDY: Cumulative literature on ZQT herbal formula reveals that its several constituent components are potent inducer of apoptosis in different cancer cells. However, the activity of ZQT against non-small-cell-lung cancer (NSCLC) has not been previously examined. The aim of the study is to investigate the molecular mechanism of ZQT on NSCLC cells. MATERIALS AND METHODS: Cell growth were determined by CCK-8 and colony formation assay. Induction of cellular apoptosis or arrest of cell cycle were determined by flow cytometric analysis using annexin V/ propidium iodide, Hoechst 33342 or TUNEL staining method. In some assay p53 activity of NSCLC ( A549 and H460) cells were blocked with pifithrin-a, prior to treatment with ZQT. The level of expression of cell cycle and apoptosis related marker proteins were estimated by western blot. The anticancer activity of ZQT in vivo were monitored in nude mice that were induced with tumor by subcutaneous inoculation of A549 cells and then treated by ZQT(100 mg/kg,200 mg/kg,400 mg/kg) gavaging for 30 days. Mice' body weight and tumor volume were measured weekly. The survival carve was recorded. Apoptosis from mice' tissue was observed by TUNEL assay. Pathological histology of liver, kidney and heart were detected by H&E staining, and its functions were tested by ELISA. RESULTS: Dose- and time-dependent inhibition of proliferation of NSCLC ( A549 and H460) cells by ZQT therapy along with induction of cell cycle arrest at G0/G1 phase were observed. The arrest of cell cycle arrest and inhibition of cellular proliferation were associated with up regulation of p53 along with down regulation of Cyclin B1 and Cdk2 indicating a mitochondrial related induction of apoptosis with ZQT. A reversal of ZQT-induced apoptosis and G0/G1 arrest was observed with pifithrin-a pretreatment. ZQT was also found to suppress the progression of tumor growth in mouse xenograft models and prolong survival. In addition, no hepato- or nephro- or cardio-toxicity with ZQT treatment were detected in mice. CONCLUSION: These findings suggest that the ZQT formula inhibits the growth of NSCLC cells and is a potential agent of complementary and alternative treatment for lung cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/toxicidade , Humanos , Neoplasias Pulmonares/patologia , Masculino , Medicina Tradicional Chinesa/métodos , Camundongos , Camundongos Nus , Fatores de Tempo , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...