Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(20)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38335547

RESUMO

In the search for high-temperature superconductivity in hydrides, a plethora of multi-hydrogen superconductors have been theoretically predicted, and some have been synthesized experimentally under ultrahigh pressures of several hundred GPa. However, the impracticality of these high-pressure methods has been a persistent issue. In response, we propose a new approach to achieve high-temperature superconductivity under ambient pressure by implanting hydrogen into lead to create a stable few-hydrogen binary perovskite, Pb4H. This approach diverges from the popular design methodology of multi-hydrogen covalent high critical temperature (Tc) superconductors under ultrahigh pressure. By solving the anisotropic Migdal-Eliashberg equations, we demonstrate that perovskite Pb4H presents a phonon-mediated superconductivity exceeding 46 K with inclusion of spin-orbit coupling, which is six times higher than that of bulk Pb (7.22 K) and comparable to that of MgB2, the highestTcachieved experimentally at ambient pressure under the Bardeen, Cooper, and Schrieffer framework. The highTccan be attributed to the strong electron-phonon coupling strength of 2.45, which arises from hydrogen implantation in lead that induces several high-frequency optical phonon modes with a relatively large phonon linewidth resulting from H atom vibration. The metallic-bonding in perovskite Pb4H not only improves the structural stability but also guarantees better ductility than the widely investigated multi-hydrogen, iron-based and cuprate superconductors. These results suggest that there is potential for the exploration of new high-temperature superconductors under ambient pressure and may reignite interest in their experimental synthesis in the near future.

2.
Phys Chem Chem Phys ; 25(31): 21037-21044, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522183

RESUMO

The discovery of superconductivity in layered MgB2 has renewed interest in the search for high-temperature conventional superconductors, leading to the synthesis of numerous hydrogen-dominated materials with high critical temperatures (Tc) under high pressures. However, achieving a high-Tc superconductor under ambient pressure remains a challenging goal. In this study, we propose a novel approach to realize a high-temperature superconductor under ambient pressure by introducing a hexagonal H monolayer into the hexagonal close-packed magnesium lattice, resulting in a new and stable few-hydrogen metal-bonded layered magnesium hydride (Mg4)2H1. This compound exhibits superior ductility compared to multi-hydrogen, cuprate, and iron-based superconductors due to its metallic bonding. Our unconventional strategy diverges from the conventional design principles used in hydrogen-dominated covalent high-temperature superconductors. Using anisotropic Migdal-Eliashberg equations, we demonstrate that the stable (Mg4)2H1 compound is a typical phonon-mediated superconductor, characterized by strong electron-phonon coupling and an excellent Tc of 37 K under ambient conditions, comparable to that of MgB2. Our findings not only present a new pathway for exploring high-temperature superconductors but also provide valuable insights for future experimental synthesis endeavors.

3.
ACS Appl Mater Interfaces ; 14(15): 17319-17329, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35385245

RESUMO

Thanks to its ultrahigh carrier mobility (∼104-105 cm2 V-1 s-1), graphene shows tremendous application potential in nanoelectronics, but it cannot be applied in effective field-effect transistors (FETs) because of its intrinsic gapless band structure. Thus, introducing a bandgap for graphene is a prerequisite to realize an FET for logic applications. Herein, through first-principles GW calculations, we have predicted a series of novel Dion-Jacobson (DJ) phase halide perovskite semiconductors CsSb(Br1-xIx)4 (x = 0, 0.5, 1) with the quasi-linear (graphene-like) band edge dispersion; as the best one of which, CsSbBr2I2 exhibits a direct bandgap (0.52 eV) as well as a quasi-linear electronic dispersion, yielding an ultrasmall carrier effective mass (0.03 m0) and a high estimated carrier mobility (5 × 103 cm2 V-1 s-1). This gives a significant reference to the exploration of semiconductors with excellent transport properties. Moreover, our calculations also implicate that the DJ perovskites CsSb(Br1-xIx)4 (x = 0, 0.25, 0.5, 0.75, 1) show soft and anisotropic mechanical characteristics as well as excellent electronic, transport, and optical properties, which demonstrate their multifunctional application in infrared optoelectronic, high-speed electronics, and photovoltaics.

4.
Phys Chem Chem Phys ; 24(4): 2110-2117, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35019921

RESUMO

Very recently, the septuple-atomic-layer MoSi2N4 has been successfully synthesized by a chemical vapor deposition method. However, pristine MoSi2N4 exhibits some shortcomings, including poor visible-light harvesting capability and a low separation rate of photo-excited electron-hole pairs, when it is applied in water splitting to produce hydrogen. Fortunately, we find that MoSi2N4 can be considered as a good co-catalyst to be stacked with InSe forming an efficient heterostructure photocatalyst. Here, the electronic and photocatalytic properties of the two-dimensional (2D) InSe/MoSi2N4 heterostructure have been systematically investigated by density functional theory for the first time. The results demonstrate that 2D InSe/MoSi2N4 has a type-II band alignment with a favourable direct bandgap of 1.61 eV and exhibits suitable band edge positions for overall water splitting. Particularly, 2D InSe/MoSi2N4 has high electron mobility (104 cm2 V-1 s-1) and shows a noticeable optical absorption coefficient (105 cm-1) in the visible-light region of the solar spectrum. These brilliant properties declare that 2D InSe/MoSi2N4 is a potential photocatalyst for overall water splitting.

5.
ACS Appl Mater Interfaces ; 13(41): 48971-48980, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612640

RESUMO

Perovskite-perovskite tandem solar cells have bright prospects to improve the power conversion efficiency (PCE) beyond the Shockley-Queisser (SQ) limit of single-junction solar cells. The star lead-based halide perovskites are well-recognized as suitable candidates for the front cell, thanks to their suitable band gap (∼1.8 eV), strong optical absorption, and high certified PCE. However, the toxicity of lead for the front cell and the lack of a narrow band gap (∼1.1 eV) for the rear cell seriously restrict the development of the two-junction tandem cell. To break through this bottleneck, a novel Dion-Jacobson (DJ)-type (n = 2) chalcogenide perovskite CsLaM2X7 (M = Ta, Nb; X = S, Se) has been found based on the powerful first-principles and advanced many-body perturbation GW calculations. Their excellent electronic, transport, and optical properties can be summarized as follows. (1) They are stable and environmentally friendly lead-free materials. (2) The direct band gap of CsLaTa2Se7 (0.96-1.10 eV) is much smaller than those of lead-based halide perovskites and very suitable for the rear cell in the two-junction tandem cell. (3) The carrier mobility in CsLaTa2Se7 reaches 1.6 × 103 cm2 V-1 s-1 at room temperature. (4) The absorption coefficients (3-5 × 105 cm-1) are 1 order higher than that of Si (104 cm-1). (5) The estimated PCEs of the Cs2Sb2Br8-CsLaTa2Se7 tandem cell (33.3%) and the concentrator solar cell (35.8% in 100 suns) are higher than those of the best recorded GaAs-Si tandem cell (32.8%) and the perovskite-perovskite tandem solar cell (24.8%). These energetic results strongly demonstrate that the novel lead-free chalcogenide perovskites CsLaM2X7 are good candidates for the rear cell of tandem cells.

6.
J Colloid Interface Sci ; 546: 20-31, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30901689

RESUMO

Searching for promising visible-light photocatalysts for overall water splitting into hydrogen and oxygen is a very challenging task to solve the energy crisis and environment pollution. The widely-used tantalate and niobate perovskite photocatalysts have two drawbacks, i.e., the large energy band gap (∼3.2-4.6 eV) and low electron (hole) mobility 102 (101) cm2 V-1 s-1, which greatly limit their photocatalytic performance. Here, based on the powerful first-principles and accurate GW calculations, we design several novel two-dimensional (2D) Ruddlesden-Popper (RP) type (n = 1) perovskite oxynitrides A2BO3N (A = Ca, Sr, Ba and B = Ta, Nb) and their bonded heterostructures and comprehensively investigate their interlayer coupling, electronic structures, transport and photocatalytic characteristics. We find that 2D A2BO3N oxynitrides have a reduced direct band gap at Γ-point, especially for three-layer (3L) Ba2NbO3N and 1L-Sr2NbO3N/1L-Ba2NbO3N bonded heterostructure with the optimized band gap ∼2.0 eV. Compared with tantalate and niobate perovskite oxides, the electron (hole) mobility increases 1-2 orders of magnitude up to 103-104 (102-103) cm2 V-1 s-1. A fast electron-hole vertical transport across the heterointerface and remarkable electron-hole separation can be realized in 1L-Sr2NbO3N/1L-Ba2NbO3N bonded heterostructure due to its strong interface Ba-O and Sr-O bonds and type-II band offset. Compared with the well-known photocatalysts, such as BiVO4 and MoS2/g-C3N4, an improved optical absorption (8 × 104 cm-1) in A2BO3N is obtained in the visible region. The 2D RP-type perovskite oxynitrides 3L-Ba2NbO3N and 1L-Sr2NbO3N/1L-Ba2NbO3N are powerful visible-light photocatalysts for overall water splitting.

7.
Nanotechnology ; 29(20): 205708, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29504514

RESUMO

Quite recently, the two-dimensional (2D) InSe nanosheet has become a hot material with great promise for advanced functional nano-devices. In this work, for the first time, we perform first-principles calculations on the structural, electronic, magnetic and transport properties of 1D InSe nanoribbons with/without hydrogen or halogen saturation. We find that armchair ribbons, with various edges and distortions, are all nonmagnetic semiconductors, with a direct bandgap of 1.3 (1.4) eV for bare (H-saturated) ribbons, and have the same high electron mobility of about 103 cm2V-1s-1 as the 2D InSe nanosheet. Zigzag InSe nanoribbons exhibit metallic behavior and diverse intrinsic ferromagnetic properties, with the magnetic moment of 0.5-0.7 µ B per unit cell, especially for their single-edge spin polarization. The edge spin orientation, mainly dominated by the unpaired electrons of the edge atoms, depends sensitively on the edge chirality. Hydrogen or halogen saturation can effectively recover the structural distortion, and modulate the electronic and magnetic properties. The binding energy calculations show that the stability of InSe nanoribbons is analogous to that of graphene and better than in 2D InSe nanosheets. These InSe nanoribbons, with novel electronic and magnetic properties, are thus very promising for use in electronic, spintronic and magnetoresistive nano-devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...