Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 60: 191-196, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29331671

RESUMO

OBJECTIVE: To study the molecular characteristics of H9N2-subtype avian influenza viruses (AIVs) isolated from air samples collected in live poultry markets (LPMs) and explore their sequence identities with AIVs that caused human infection. METHODS: Weekly surveillance of H9N2-subtype AIVs in the air of LPMs was conducted from 2015 to 2016. H9-positive samples were isolated from chicken embryos. Whole genome sequences of the isolated AIVs were obtained through high-throughput sequencing. Phylogenetic analysis and key loci variations of the sequences were further analyzed. RESULTS: A total of 327 aerosol samples were collected from LPMs. Nine samples were positive for H9-subtype AIVs based on quantitative real-time reverse transcription polymerase chain reaction (qRRT-PCR). According to the whole genome sequence analysis and phylogenetic analysis, except for the A/Environment/Zhongshan/ZS201505/2015 (ZS201505) strain, 8 gene segments of 8 aerosol H9N2 isolates and 2 H9N2 human isolates in 2015 were located in the same clade. Among key loci variations, except for the ZS201505 strain, H9N2-subtype AIVs had no mutations in eight receptor binding sites of hemagglutinin (HA), and stalks of neuraminidase (NA) proteins exhibited a deletion site of three bases. The PA gene of ZS201503 and ZS201602 exhibited an L336M mutation. The N30D and T215A mutations in the M1 gene and amino acid residues L89V in PB2, P42S in NS1 and S31N in M2 were retained in these 9 strains of H9N2 isolates, which could enhance the virus's virulence. CONCLUSION: Live H9N2 AIVs survived in the aerosol of LPMs in Zhongshan City. The aerosol viruses had a close evolutionary relationship with human epidemic strains, indicating that there might be a risk of AIV transmission from polluted aerosols in LPMs to humans. Mutations in H9N2-subtype AIVs isolated from air samples collected from LPMs suggested their pathogenicity was enhanced to infect humans.


Assuntos
Microbiologia do Ar , Vírus da Influenza A Subtipo H9N2/classificação , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/virologia , Aves Domésticas/virologia , Animais , Embrião de Galinha , Genoma Viral/genética , Filogenia , RNA Viral/genética , Cultura de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...