Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Int J Infect Dis ; : 107164, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969328

RESUMO

OBJECTIVES: SARS-CoV-2 infection could cause persistent lung injury or indicate potential genetic susceptibilities. While infection-elicited hybrid immunity could protect against severe COVID-19, it remains unknown whether recent infection could reduce pneumonia risk during reinfection due to insufficient viral and chest CT screening. METHODS: 15,598 patients, 96% fully vaccinated and 52% boosted, from Xiangyang, China who had symptomatic COVID-19 and chest CT scans during the first omicron BF.7 wave in December 2022 to January 2023 were followed through the second omicron XBB.1.5 wave between May and August 2023. 17,968 second-wave COVID-19 patients with chest CT scans but without prior symptomatic COVID-19 history were enrolled as first-time infection controls. RESULTS: 19.6% (3,061/15,598) first-wave patients were diagnosed with pneumonia. Among second-wave reinfected patients, only 0.2% (4/2,202) developed pneumonia, which was lower than the 1.7% (311/17,968) pneumonia prevalence among second-wave first-time patients, with adjusted relative risk (RR) of 0.11 (95% CI: 0.04-0.29). 1.3% (40/3,039) first wave pneumonia survivors showed residual abnormal patterns in follow-up CT scans within 8 months after pneumonia diagnosis. CONCLUSIONS: In a highly vaccinated population, prior symptomatic omicron infection within 8 months reduced pneumonia risk during reinfection. Uninfected individuals might need up-to-date vaccination to reduce pneumonia risk.

2.
Life Sci ; 351: 122853, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889841

RESUMO

AIMS: Activation of central respiratory chemoreceptors provides excitatory drive to both respiratory and sympathetic outputs. The enhanced respiratory-sympathetic coupling contributes to the onset and development of hypertension. However, the specific central targets and molecular mechanisms involved in this process remain elusive. This study aimed to investigate the role of acid-sensing ion channel 1 (ASIC1) in nucleus tractus solitarii (NTS) neurons in CO2-stimulated cardiorespiratory effects in spontaneously hypertensive rats (SHRs). MAIN METHODS: Respiration and blood pressure of conscious rats were recorded by whole-body plethysmography and telemetry, respectively. Western blot was used to detect the expression difference of ASIC1 protein in NTS region between Wistar-Kyoto (WKY) rats and SHRs. Excitability of NTS neurons were assessed by extracellular recordings. KEY FINDINGS: Compared to WKY rats, the enhanced CO2-stimulated cardiopulmonary effect and up-regulation of ASIC1 in the NTS were already observed in 4-week-old prehypertensive SHRs. Furthermore, specific blockade of ASIC1 effectively attenuated the CO2-stimulated increase in firing rate of NTS neurons in anesthetized adult SHRs. Intracerebroventricular injections of the ASIC1a blocker PcTx1 or knockdown Asic1 in NTS neurons significantly reduced the heightened CO2-stimulated ventilatory response, and diminished the CO2-stimulated increase in arterial pressure and heart rate in adult SHRs. SIGNIFICANCE: These findings showed that dysregulated ASIC1 signaling in the NTS contribute to the exaggerated CO2-stimulated cardiorespiratory effects observed in SHRs.


Assuntos
Canais Iônicos Sensíveis a Ácido , Pressão Sanguínea , Dióxido de Carbono , Hipertensão , Neurônios , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Núcleo Solitário , Animais , Canais Iônicos Sensíveis a Ácido/metabolismo , Núcleo Solitário/metabolismo , Ratos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Masculino , Dióxido de Carbono/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Respiração/efeitos dos fármacos , Peptídeos , Venenos de Aranha
3.
J Neuroinflammation ; 21(1): 101, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632579

RESUMO

BACKGROUND: Increased neuroinflammation in brain regions regulating sympathetic nerves is associated with hypertension. Emerging evidence from both human and animal studies suggests a link between hypertension and gut microbiota, as well as microbiota-derived metabolites short-chain fatty acids (SCFAs). However, the precise mechanisms underlying this gut-brain axis remain unclear. METHODS: The levels of microbiota-derived SCFAs in spontaneously hypertensive rats (SHRs) were determined by gas chromatography-mass spectrometry. To observe the effect of acetate on arterial blood pressure (ABP) in rats, sodium acetate was supplemented via drinking water for continuous 7 days. ABP was recorded by radio telemetry. The inflammatory factors, morphology of microglia and astrocytes in rostral ventrolateral medulla (RVLM) were detected. In addition, blood-brain barrier (BBB) permeability, composition and metabolomics of the gut microbiome, and intestinal pathological manifestations were also measured. RESULTS: The serum acetate levels in SHRs are lower than in normotensive control rats. Supplementation with acetate reduces ABP, inhibits sympathetic nerve activity in SHRs. Furthermore, acetate suppresses RVLM neuroinflammation in SHRs, increases microglia and astrocyte morphologic complexity, decreases BBB permeability, modulates intestinal flora, increases fecal flora metabolites, and inhibits intestinal fibrosis. CONCLUSIONS: Microbiota-derived acetate exerts antihypertensive effects by modulating microglia and astrocytes and inhibiting neuroinflammation and sympathetic output.


Assuntos
Hipertensão , Microbiota , Humanos , Ratos , Animais , Ratos Endogâmicos SHR , Doenças Neuroinflamatórias , Hipertensão/metabolismo , Pressão Sanguínea , Bulbo/metabolismo , Acetatos/farmacologia
4.
Arch Biochem Biophys ; 756: 110002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636689

RESUMO

BACKGROUND: Phospholipid scramblase 1 (PLSCR1) is a calcium-dependent endofacial plasma-membrane protein that plays an essential role in multiple human cancers. However, little is known about its role in glioma. This study aimed to investigate PLSCR1 function in glioma, and elucidate its underlying molecular mechanisms. METHODS: PLSCR1 expression in human glioma cell lines (U87MG, U251, LN229, A172 and T98G) and human astrocytes was detected by western blot and qRT-PCR. PLSCR1 was silenced using si-PLSCR1-1 and si-PLSCR1-2 in LN229 and U251 cells. PLSCR1 was overexpressed using the pcDNA-PLSCR1 plasmid in T98G cells. Colony formation, 5-ethynyl-2'-deoxyuridine, flow cytometry and transwell assays were employed for measuring cell proliferation, apoptosis and mobility after PLSCR1 knockdown or overexpression. PLSCR1 function in glycolysis in glioma cells was determined through measuring the extracellular acidification rate, oxygen consumption rate, glucose consumption and lactate production. Besides, immunohistochemistry, western blot and qRT-PCR were utilized to assess mRNA and protein expression. Besides, the effect of PLSCR1 silencing on subcutaneous tumor was also monitored. RESULTS: PLSCR1 expression was upregulated in glioma. The downregulation of PLSCR1 repressed the proliferation, mobility, epithelial-to-mesenchymal transition (EMT) and glycolysis; however, it facilitated apoptosis in glioma cells. Whereas, PLSCR1 upregulation had the opposite effect. Moreover, PLSCR1 promoted the activation of the IL-6/JAK/STAT3 pathway in glioma cells. Besides, IL-6 treatment significantly reversed the function of PLSCR1 silencing on cell proliferation, mobility, EMT, apoptosis and glycolysis. In a nude mouse tumor model, silencing PLSCR1 suppressed tumor growth via inactivating IL-6/JAK/STAT3 signaling. CONCLUSION: Our results indicated that PLSCR1 could facilitate proliferation, mobility, EMT and glycolysis, but repress apoptosis through activating IL-6/JAK/STAT3 signaling in glioma. Therefore, PLSCR1 may function as a potential therapeutic target for glioma.


Assuntos
Proliferação de Células , Glioma , Interleucina-6 , Proteínas de Transferência de Fosfolipídeos , Fator de Transcrição STAT3 , Transdução de Sinais , Humanos , Glioma/metabolismo , Glioma/patologia , Glioma/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Linhagem Celular Tumoral , Animais , Interleucina-6/metabolismo , Camundongos , Camundongos Nus , Janus Quinases/metabolismo , Apoptose , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Glicólise , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Movimento Celular
5.
Front Bioeng Biotechnol ; 12: 1339135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476968

RESUMO

Introduction: Bone tissue engineering is considered the ideal approach for bone repair. Mesoporous bioactive glass (MBG) possesses the characteristics of high drug-loading capacity and bioactivity. Low-intensity pulsed ultrasound contributes to promoting fracture healing and bone defect repair, and dimethyloxalyl glycine (DMOG) is a small molecular inhibitor that can suppress prolyl hydroxylase, reducing the degradation of hypoxia-inducible factor. Methods: In this study, we proposed to prepare DMOG-loaded MBG/poly(D,L-lactide) composite scaffolds (DMOG-MBG/PDLLA) for promoting bone repair. The effects of ultrasound stimulation and DMOG release on the cell responses of rat bone marrow mesenchymal stem cells (BMSCs) and human umbilical vein endothelial cells (HUVECs) and bone repair in vivo were investigated. Results and Discussion: The results showed that both ultrasound stimulation and DMOG release could promote the proliferation, adhesion and differentiation of BMSCs and HUVECs, respectively. After the implantation of scaffolds in rat cranial bone defect model for 8 weeks, the results indicated that the combined ultrasound stimulation and DMOG release contributed to the highest ability for promoting bone repair. Hence, the DMOG-MBG/PDLLA scaffolds with ultrasound stimulation are promising for application in bone repair.

6.
Adv Healthc Mater ; 13(13): e2303217, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38363057

RESUMO

Osteochondral defects are often accompanied by excessive reactive oxygen species (ROS) caused by osteoarthritis or acute surgical inflammation. An inflammatory environment containing excess ROS will not only hinder tissue regeneration but also impact the quality of newly formed tissues. Therefore, there is an urgent need to develop scaffolds with both ROS scavenging and osteochondral repair functions to promote and protect osteochondral tissue regeneration. In this work, by using 3D printing technology, a composite scaffold based on cobalt-incorporated chloroapatite (Co-ClAP) bioceramics, which possesses ROS-scavenging activity and can support cell proliferation, adhesion, and differentiation, is developed. Benefiting from the catalytic activity of Co-ClAP bioceramics, the composite scaffold can protect cells from oxidative damage under ROS-excessive conditions, support their directional differentiation, and simultaneously mediate an anti-inflammatory microenvironment. In addition, it is also confirmed by using rabbit osteochondral defect model that the Co-ClAP/poly(lactic-co-glycolic acid) scaffold can effectively promote the integrated regeneration of cartilage and subchondral bone, exhibiting an ideal repair effect in vivo. This study provides a promising strategy for the treatment of defects with excess ROS and inflammatory microenvironments.


Assuntos
Regeneração Óssea , Cerâmica , Cobalto , Impressão Tridimensional , Alicerces Teciduais , Animais , Coelhos , Alicerces Teciduais/química , Cobalto/química , Cerâmica/química , Cerâmica/farmacologia , Regeneração Óssea/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Engenharia Tecidual/métodos , Proliferação de Células/efeitos dos fármacos , Apatitas/química , Diferenciação Celular/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo
7.
ACS Appl Bio Mater ; 7(1): 429-442, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171011

RESUMO

Hemorrhage and infection after emergency trauma are two main factors that cause deaths. It is of great importance to instantly stop bleeding and proceed with antibacterial treatment for saving lives. However, there is still a huge need and challenge to develop materials with functions of both rapid hemostasis and effective antibacterial therapy. Herein, we propose the fabrication of a composite aerogel mainly consisting of mesoporous bioactive glass (MBG) and graphene oxide (GO) through freeze-drying. This composite aerogel has a three-dimensional porous structure, high absorption, good hydrophilicity, and negative zeta potential. Moreover, it exhibits satisfactory hemostatic activities including low BCI, good hemocompatibility, and activation of intrinsic pathways. When applied to rat liver injury bleeding, it can decrease 60% hemostasis time and 75% blood loss amount compared to medical gauze. On the other hand, the composite aerogel shows excellent photothermal antibacterial capacity against Staphylococcus aureus and Escherichia coli. Animal experiments further verify that this composite aerogel can effectively kill bacteria in wound sites via photothermal treatment and promote wound healing. Hence, this MBG-GO composite aerogel makes a great choice for the therapy of emergency trauma with massive hemorrhage and bacterial infection.


Assuntos
Grafite , Hemostáticos , Ratos , Animais , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Hemostasia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Hemorragia
8.
Artigo em Inglês | MEDLINE | ID: mdl-37394619

RESUMO

Natural materials and bioprocesses provide abundant inspirations for the design and synthesis of high-performance nanomaterials. In the past several decades, bioinspired nanomaterials have shown great potential in the application of biomedical fields, such as tissue engineering, drug delivery, and cancer therapy, and so on. In this review, three types of bioinspired strategies for biomedical nanomaterials, that is, inspired by the natural structures, biomolecules, and bioprocesses, are mainly introduced. We summarize and discuss the design concepts and synthesis approaches of various bioinspired nanomaterials along with their specific roles in biomedical applications. Additionally, we discuss the challenges for the development of bioinspired biomedical nanomaterials, such as mechanical failure in wet environment, limitation in scale-up fabrication, and lack of deep understanding of biological properties. It is expected that the development and clinical translation of bioinspired biomedical nanomaterials will be further promoted under the cooperation of interdisciplinary subjects in future. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Nanoestruturas , Humanos , Nanoestruturas/química , Sistemas de Liberação de Medicamentos , Engenharia Tecidual
9.
Adv Healthc Mater ; 13(3): e2302328, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37824839

RESUMO

Diabetic wound is one of the chronic wounds that is difficult to heal, and effective treatment of it still confronts a great challenge. Monitoring the variation of diabetic wound microenvironment (such as hydrogen peroxide (H2 O2 )) can understand the wound state and guide the wound management. Herein, a multifunctional hydrogel with the abilities of monitoring the H2 O2 concentration, alleviating oxidative stress and promoting wound healing is developed, which is prepared by encapsulating manganese-containing bioactive glass (MnBG) and CePO4 :Tb in biocompatible gelatin methacryloyl (GelMA) hydrogel (CPT-MnBG-Gel). On the one hand, the H2 O2 -dependent fluorescence quenching effect of the CePO4 :Tb contributes to visible monitoring of the H2 O2 concentration of wounds via smartphone imaging, and the CPT-MnBG-Gel hydrogel can effectively monitor the H2 O2 level of 10.35-200 µmol L-1 . On the other hand, MnBG can alleviate oxidative stress and promote the proliferation, migration and differentiation of fibroblasts and endothelial cells in vitro owing to the bioactive Mn and Si ions, and in vivo evaluation also demonstrates that the CPT-MnBG-Gel hydrogels can effectively accelerate wound healing. Hence, such multifunctional hydrogel is promising for diabetic wound management and accelerating wound healing.


Assuntos
Diabetes Mellitus , Hidrogéis , Hidrogéis/farmacologia , Células Endoteliais , Diferenciação Celular , Fibroblastos , Cicatrização , Antibacterianos
10.
Mater Today Bio ; 21: 100717, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37545559

RESUMO

Bone defects induced by bone trauma, tumors and osteoarthritis greatly affect the life quality and health of patients. The biomaterials with numerous advantages are becoming the most preferred options for repairing bone defects and treating orthopedic diseases. However, their repairing effects remains unsatisfactory, especially in bone defects suffering from tumor, inflammation, and/or bacterial infection. There are several strategies to functionalize biomaterials, but a more general and efficient method is essential for accomplishing the functionalization of biomaterials. Possessing high specific surface, high porosity, controlled degradability and variable composition, metal-organic frameworks (MOFs) materials are inherently advantageous for functionalizing biomaterials, with tremendous improvements having been achieved. This review summarizes recent progresses in MOFs functionalized biomaterials for promoting bone repair and therapeutic effects. In specific, by utilizing various properties of diverse MOFs materials, integrated MOFs functionalized biomaterials achieve enhanced bone regeneration, antibacterial, anti-inflammatory and anti-tumor functions. Finally, the summary and prospects of on the development of MOFs-functionalized biomaterials for promoting bone repair were discussed.

11.
Front Psychol ; 14: 1043339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425164

RESUMO

Introduction: Anxiety not only harms employees' work efficiency and satisfaction but also presents as a hazard to their mental health. This study aimed to investigate the prevalence of anxiety among Chinese employees, identify their personality profiles and explore the anxiety-related factors in different personality profiles. Methods: This national investigation adopted the multistage random sampling method to recruit employees. A total of 3,875 employees were enrolled in this study, and 39.1% (1,515/3,875) of them were experiencing anxiety at the time of the study. Latent profile analysis (LPA) was conducted to identify personality subgroups among Chinese employees based on their BFI-10 scores. Results: LPA identified a three-profile solution among Chinese employees: average, resilient, and introverted. Employees in the resilient profile had the lowest anxiety rate (16.1%, 132/822), and those in the average profile had the highest rate (46.8%, 1,166/2,494). Multivariate analysis results showed that for all personality profiles, self-efficacy was positively associated with anxiety, and work-family conflict was negatively associated with anxiety. High levels of perceived social support and self-efficacy reduced the risk of anxiety and higher work-family conflict and no partner increased the odds of anxiety in the average profile. For the introverted profile, female gender, and living in a city increased the chances of suffering from anxiety. Discussion: This study identified that each personality profile of Chinese employees had its own set of factors associated with anxiety, which could facilitate employers to provide targeted interventions to alleviate employees' anxiety.

12.
J Med Virol ; 95(4): e28694, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36946504

RESUMO

The current COVID-19 vaccination program requires frequent booster vaccination to maintain sufficient neutralization levels against immune evasive SARS-CoV-2 variants. However, prior studies found more potent and durable immune response in convalescing individuals, raising the possibility of less frequent booster vaccination for them. Here, we conducted a longitudinal immunological study based on two prospective cohorts of booster vaccinated convalescing COVID-19 patients or healthcare workers (HCW) without COVID-19 history in Xiangyang, China. Comparing to 1-month post-boosting, pseudovirus neutralization titers (pVNT50) of ancestral Wuhan-Hu-1 and circulating omicron sub-variants BA.5, BF.7, BA.4.6, BA.2.75, and BA.2.75.2 spikes were stable or even increased in convalescing samples at 6-month post-boosting, when HCW samples showed substantial drop of neutralization titers across the spectrum. Variant-to-Wuhan-Hu-1 pVNT50 ratios showed no significant variation during the 17 months from pre-vaccination to 6-month post-boosting in convalescing individuals, indicating that the high durability of hybrid immunity was likely sustained by continuously improving neutralization potency that compensated immune decay. Our data provide mechanistic insight into prior epidemiological findings that vaccine-elicited humoral immune response was more durable in convalescing individuals than those without SARS-CoV-2 infection, and suggest further research into potential extension of boosting intervals for convalescing individuals.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos Prospectivos , SARS-CoV-2 , Imunidade Humoral , Vacinação , Anticorpos Neutralizantes , Anticorpos Antivirais
13.
Oncol Lett ; 25(4): 157, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36936032

RESUMO

[This retracts the article DOI: 10.3892/ol.2018.9173.].

14.
Small ; 19(23): e2206575, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36908079

RESUMO

Neurological diseases are the foremost cause of disability and the second leading cause of death worldwide. Owing to the special microenvironment of neural tissues and biological characteristics of neural cells, a considerable number of neurological disorders are currently incurable. In the past few years, the development of nanoplatforms based on metal-organic frameworks (MOFs) has broadened opportunities for offering sensitive diagnosis/monitoring and effective therapy of neurology-related diseases. In this article, the obstacles for neurotherapeutics, including delayed diagnosis and misdiagnosis, the existence of blood brain barrier (BBB), off-target treatment, irrepressible inflammatory storm/oxidative stress, and irreversible nerve cell death are summarized. Correspondingly, MOFs-based diagnostic/monitoring strategies such as neuroimaging and biosensors (electrochemistry, fluorometry, colorimetry, electrochemiluminescence, etc.) and MOFs-based therapeutic strategies including higher BBB permeability, targeting specific lesion sites, attenuation of neuroinflammation/oxidative stress as well as regeneration of nerve cells, are extensively highlighted for the management of neurological diseases. Finally, the challenges of the present research from perspective of clinical translation are discussed, hoping to facilitate interdisciplinary studies at the intersections between MOFs-based nanoplatforms and neurotheranostics.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Doenças do Sistema Nervoso , Humanos , Estruturas Metalorgânicas/uso terapêutico , Medicina de Precisão , Técnicas Biossensoriais/métodos , Colorimetria
15.
Adv Sci (Weinh) ; 10(13): e2206875, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36828785

RESUMO

Osteoarthritis (OA) is a degenerative disease that often causes cartilage lesions and even osteochondral damage. Osteochondral defects induced by OA are accompanied by an inflammatory arthrosis microenvironment with overproduced reactive oxygen species (ROS), resulting in the exacerbation of defects and difficulty regenerating osteochondral tissues. Therefore, it is urgently needed to develop osteochondral scaffolds that can not only promote the integrated regeneration of cartilage and subchondral bone, but also possess ROS-scavenging ability to protect tissues from oxidative stress. Herein, zinc-cobalt bimetallic organic framework (Zn/Co-MOF) functionalized bioceramic scaffolds are designed for repairing osteochondral defects under OA environment. By functionalizing Zn/Co-MOF on the 3D-printed beta-tricalcium phosphate (ß-TCP) scaffolds, the Zn/Co-MOF functionalized ß-TCP (MOF-TCP) scaffolds with broad-spectrum ROS-scavenging ability are successfully developed. Benefiting from its catalytic active sites and degradation products, Zn/Co-MOF endows the scaffolds with excellent antioxidative and anti-inflammatory properties to protect cells from ROS invasion, as well as dual-bioactivities of simultaneously inducing osteogenic and chondrogenic differentiation in vitro. Furthermore, in vivo results confirm that MOF-TCP scaffolds accelerate the integrated regeneration of cartilage and subchondral bone in severe osteochondral defects. This study offers a promising strategy for treating defects induced by OA as well as other inflammatory diseases.


Assuntos
Estruturas Metalorgânicas , Alicerces Teciduais , Alicerces Teciduais/química , Estruturas Metalorgânicas/farmacologia , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio
17.
Chem Soc Rev ; 52(3): 973-1000, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36597879

RESUMO

Lactate in tumors has long been considered "metabolic junk" derived from the glycolysis of cancer cells and utilized only as a biomarker of malignancy, but is presently believed to be a pivotal regulator of tumor development, maintenance and metastasis. Indeed, tumor lactate can be a "fuel" for energy supply and functions as a signaling molecule, which actively contributes to tumor progression, angiogenesis, immunosuppression, therapeutic resistance, etc., thus providing promising opportunities for cancer treatment. However, the current approaches for regulating lactate homeostasis with available agents are still challenging, which is mainly due to the short half-life, low bioavailability and poor specificity of these agents and their unsatisfactory therapeutic outcomes. In recent years, lactate modulation nanomedicines have emerged as a charming and efficient strategy for fighting cancer, which play important roles in optimizing the delivery of lactate-modulating agents for more precise and effective modulation and treatment. Integrating specific lactate-modulating functions in diverse therapeutic nanomedicines may overcome the intrinsic restrictions of different therapeutic modalities by remodeling the pathological microenvironment for achieving enhanced cancer therapy. In this review, the most recent advances in the engineering of functional nanomedicines that can modulate tumor lactate for cancer therapy are summarized and discussed, and the fundamental mechanisms by which lactate modulation benefits various therapeutics are elucidated. Finally, the challenges and perspectives of this emerging strategy in the anti-tumor field are highlighted.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ácido Láctico/uso terapêutico , Nanomedicina , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Portadores de Fármacos/uso terapêutico , Microambiente Tumoral
18.
Bioact Mater ; 20: 29-40, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35633872

RESUMO

Tendon-bone healing is essential for an effective rotator cuff tendon repair surgery, however, this remains a significant challenge due to the lack of biomaterials with high strength and bioactivity. Inspired by the high-performance exoskeleton of natural organisms, we set out to apply natural fish scale (FS) modified by calcium silicate nanoparticles (CS NPs) as a new biomaterial (CS-FS) to overcome the challenge. Benefit from its "Bouligand" microstructure, such FS-based scaffold maintained excellent tensile strength (125.05 MPa) and toughness (14.16 MJ/m3), which are 1.93 and 2.72 times that of natural tendon respectively, allowing it to well meet the requirements for rotator cuff tendon repair. Additionally, CS-FS showed diverse bioactivities by stimulating the differentiation and phenotypic maintenance of multiple types of cells participated into the composition of tendon-bone junction, (e.g. bone marrow mesenchymal stem cells (BMSCs), chondrocyte, and tendon stem/progenitor cells (TSPCs)). In both rat and rabbit rotator cuff tear (RCT) models, CS-FS played a key role in the tendon-bone interface regeneration and biomechanical function, which may be achieved by activating BMP-2/Smad/Runx2 pathway in BMSCs. Therefore, natural fish scale -based biomaterials are the promising candidate for clinical tendon repair due to their outstanding strength and bioactivity.

19.
Small ; 19(8): e2204992, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36564358

RESUMO

As the emerging modalities for tumor therapy, sonodynamic therapy (SDT) and chemodynamic therapy (CDT) can generate reactive oxygen species (ROS), typically inducing tumor cell apoptosis. However, the construction of more efficient sonosensitizers integrated with excellent Fenton/Fenton-like catalytic activity to improve the synergistic therapeutic effect of SDT and CDT is still highly challenging. In this study, 2D semiconductor FePS3 nanosheets (NSs), as one of the metal phosphorus trichalcogenides for both sonosensitizer and Fenton catalyst, are successfully synthesized via an ultrasonic-assisted liquid phase exfoliation method from bulk FePS3 and further modified with lipoic acid-polyethylene glycol (LA-PEG) to obtain FePS3 -PEG NSs with desirable biocompatibility. The in vitro and in vivo results demonstrate that the engineered FePS3 -PEG NSs induce the combinatorial SDT/CDT effect attributing to the enhanced ROS generation and significant glutathione depletion, which can conduct highly efficient and safe tumor inhibition and prolong the life span of tumor-bearing mice. This work provides the paradigm of semiconductor FePS3 NSs as the integrative sonosensitizer/Fenton nanocatalyst for dual nanodynamic tumor therapy, paving the new way for exploring other 2D metal phosphorus trichalcogenides in biomedicine.


Assuntos
Neoplasias , Terapia por Ultrassom , Camundongos , Animais , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Neoplasias/terapia , Terapia por Ultrassom/métodos , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...