Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 432(16): 4523-4543, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32522558

RESUMO

Single-stranded noncoding regulatory RNAs, as exemplified by bacterial riboswitches, are highly dynamic. The conformational dynamics allow the riboswitch to reach maximum switching efficiency under appropriate conditions. Here we characterize the conformational dynamics of preQ1 riboswitches from mesophilic and thermophilic bacterial species at various temperatures. With the integrative use of small-angle X-ray scattering, NMR, and molecular dynamics simulations, we model the ensemble-structures of the preQ1 riboswitch aptamers without or with a ligand bound. We show that the preQ1 riboswitch is sufficiently dynamic and fluctuating among multiple folding intermediates only near the physiological temperature of the microorganism. The hierarchical folding dynamics of the RNA involves the docking of 3'-tail to form a second RNA helix and the helical stacking to form an H-type pseudoknot structure. Further, we show that RNA secondary and tertiary dynamics can be modulated by temperature and by the length of an internal loop. The coupled equilibria between RNA folding intermediates are essential for preQ1 binding, and a four-state exchange model can account for the change of ligand-triggered switching efficiency with temperature. Together, we have established a relationship between the hierarchical dynamics and riboswitch function, and illustrated how the RNA adapts to high temperature.


Assuntos
Bacillus subtilis/genética , Firmicutes/genética , RNA não Traduzido/química , Bacillus subtilis/química , Firmicutes/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Dobramento de RNA , Riboswitch , Espalhamento a Baixo Ângulo , Termodinâmica , Difração de Raios X
2.
Protein Cell ; 10(4): 272-284, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29542011

RESUMO

N6-methyladenosine (m6A), a ubiquitous RNA modification, is installed by METTL3-METTL14 complex. The structure of the heterodimeric complex between the methyltransferase domains (MTDs) of METTL3 and METTL14 has been previously determined. However, the MTDs alone possess no enzymatic activity. Here we present the solution structure for the zinc finger domain (ZFD) of METTL3, the inclusion of which fulfills the methyltransferase activity of METTL3-METTL14. We show that the ZFD specifically binds to an RNA containing 5'-GGACU-3' consensus sequence, but does not to one without. The ZFD thus serves as the target recognition domain, a structural feature previously shown for DNA methyltransferases, and cooperates with the MTDs of METTL3-METTL14 for catalysis. However, the interaction between the ZFD and the specific RNA is extremely weak, with the binding affinity at several hundred micromolar under physiological conditions. The ZFD contains two CCCH-type zinc fingers connected by an anti-parallel ß-sheet. Mutational analysis and NMR titrations have mapped the functional interface to a contiguous surface. As a division of labor, the RNA-binding interface comprises basic residues from zinc finger 1 and hydrophobic residues from ß-sheet and zinc finger 2. Further we show that the linker between the ZFD and MTD of METTL3 is flexible but partially folded, which may permit the cooperation between the two domains during catalysis. Together, the structural characterization of METTL3 ZFD paves the way to elucidate the atomic details of the entire process of RNA m6A modification.


Assuntos
Adenosina/análogos & derivados , Metiltransferases/química , RNA/metabolismo , Adenosina/metabolismo , Humanos , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...