Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 413: 135656, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780856

RESUMO

Recent studies emphasize the improved nutritional and functional status of fermented okara; however, little is known about the metabolite change during fermentation and how it alters metabolic pathways. A metabolomics approach based on untargeted LC-MS reveals metabolic changes in okara fermented by Bacillus subtilis DC-15. We identified 761 differential metabolites, with the highest abundances found in amino acids, dipeptides, fatty acids, small molecule sugars, and vitamins. Moreover, these identified metabolites were mapped to their respective biosynthesis pathways in order to gain a better understanding of the biochemical reactions triggered by fermentation. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, 485 metabolites were enriched to metabolism-related pathways. They include 37 carbohydrate metabolites, 79 amino acid metabolites, and 22 lipid metabolites. As a result of okara fermentation, we observed a gradual enrichment of metabolites and stabilization of the compounds.


Assuntos
Bacillus subtilis , Espectrometria de Massas em Tandem , Cromatografia Líquida , Metabolômica , Fermentação
2.
Crit Rev Food Sci Nutr ; : 1-13, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36271691

RESUMO

Nutrition-gut cross-talk holds a vital position in sustaining intestinal function, and micronutrient metabolism has emerged as the foremost metabolic pathway to preserve gut homeostasis. Among micronutrients, B vitamins have evolved prior to DNA/RNA and are known for their vital roles for major evolutionary transitions in extant organisms. Despite their universal requirement and critical role, not all the three domains of life are endowed with a natural ability for de novo B vitamins synthesis. The human gut microbiome constitutes prototrophs and auxotroph which are entirely dependent on dietary intake and gut microbial production of B vitamins. The syntrophic metabolism involving cross-feeding of B vitamins and community-wide exchange between commensal bacteria elicit important changes in the diversity and composition of the human gut microbiome. Hereto, we discuss the B-vitamins sharing among prototrophic and auxotrophic gut bacteria, their absorption in small intestine and transport in distal gut, functional role in relation to the gut homeostasis and symptoms linked to their deficiency. We also briefly explore their potential involvement as psychobiotics in brain energetic metabolism (kynurenines/tryptophan pathway) for neurological functions and highlight their deficiency related malfunctioning.

3.
Food Chem ; 387: 132947, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35427869

RESUMO

The utilization of major edible soy-waste (okara) remains a challenge due to its poor digestion, nutritional imbalance (lack of B-vitamins), and undesirable off-flavors. Herein, fresh okara was enzymatically hydrolyzed and then fermented using the B2-overproducing Lactiplantibacillus plantarum UFG169 strain. SEM micrographs showed the microporous and honeycombed structures on the surface of okara. The off-flavors were reduced, and the essential amino acids content was significantly increased in fermented okara. The higher ß-glucosidase activity, increased aglycone isoflavones, and in situ riboflavin (B2) were associated with the enhanced antioxidant potential of the fermented okara. The in vitro digestion of okara resulted in reduced particle size, higher protein digestibility, improved aggregation, lower protein molecular chains, and increased polyphenols. Overall, our study indicated the improved nutrition and digestibility of B2 bio-enriched okara.


Assuntos
Glycine max , Isoflavonas , Digestão , Fermentação , Hidrólise , Isoflavonas/metabolismo , Glycine max/química
4.
J Agric Food Chem ; 70(12): 3818-3831, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35302755

RESUMO

Epidemiological evidence emphasizes that ariboflavinosis can lead to oxidative stress, which in turn may mediate the initiation and progression of liver injury and intestinal inflammation. Although vitamin B2 has gained worldwide attention for its antioxidant defense, the relationship between B2 status, oxidative stress, inflammatory response, and intestinal homeostasis remains indistinct. Herein, we developed a B2 depletion-repletion BALB/c mice model to investigate the ameliorative effects of B2 bioenriched fermented soymilk (B2FS) on ariboflavinosis, accompanied by oxidative stress, inflammation, and gut microbiota modulation in response to B2 deficiency. In vivo results revealed that the phenotypic ariboflavinosis symptoms, growth rate, EGRAC status, and hepatic function reverted to normal after B2FS supplementation. B2FS significantly elevated CAT, SOD, T-AOC, and compromised MDA levels in the serum, simultaneously up-regulated Nrf2, CAT, and SOD2, and down-regulated Keap1 gene in the colon. The histopathological characteristics revealed significant alleviation in the liver and intestinal inflammation, confirmed by the downregulation of inflammatory (IL-1ß and IL-6) and nuclear transcription (NF-κB) factors after B2FS supplementation. B2FS also increased the abundance and diversity of gut microbiota, increased the relative abundance of Prevotella and Absiella, as well as decreased Proteobacteria, Fusobacteria, Synergistetes, and Cyanobacteria in strong conjunction with antioxidant, anti-inflammatory properties, and gut homeostasis along with the remarkable increase in cecal SCFAs content. We hereby reveal that B2FS can effectively alleviate deleterious ariboflavinosis associated with oxidative stress mediated liver injury, chronic intestinal inflammation, and gut dysbiosis in the B2 depletion-repletion mice model via activation of the Nrf2 signaling pathway.


Assuntos
Microbioma Gastrointestinal , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Riboflavina/metabolismo
5.
Food Res Int ; 145: 110419, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34112422

RESUMO

Due to highly nutritious and well-known prebiotic nature, okara (soy by-product) can improve the physiological benefits of probiotic consumption by enhancing the physicochemical stability and bioavailability of bacteria and metabolites, partially in food matrices and then in gastrointestinal tract. Initially, vitamin B2 producing probiotic Lactobacillus plantarum UFG10 was immobilized with 4% okara for soy milk fermentation. SEM micrographs showed firm adherence of UFG10 to okara surface depicting efficient immobilization. Soy milk fermented with okara immobilized UFG10 showed enhanced ß-glucosidase activity, stimulating the biotransformation of isoflavones from glucosides (daidzin, from 27.78 to 9.84 µg/mL; genistin, from 32.58 to 8.33 µg/mL) to aglycones (daidzein, from 0.19 to 30.84 µg/mL; genistein, from 1.42 to 33.10 µg/mL) and higher B2 production (1.53 µg/mL, 12 h) confirmed by HPLC. Okara addition and B2 enrichment could yield relatively higher antioxidant strength than control soy milk. PLSR correlation revealed the effects of okara and B2 on the functional properties of soy milk. After okara immobilization, soy milk showed higher soy protein digestibility after in vitro digestion for 225 min, higher aggregation, and lower protein molecular chains, qualitatively confirmed with Atomic force microscope. Okara immobilized bacterial cells exhibited relatively greater resistance up to 55.1% (p < 0.05) in simulated GIT, indicating okara as an ideal substrate for an efficient immobilization which ultimately improved the fate of soy B2 and protein bioaccessibility and functional products such as isoflavones for micro structural design of soy milk with improved nutrition and digestibility.


Assuntos
Leite de Soja , Digestão , Fermentação , Riboflavina , Vitaminas
6.
Food Funct ; 12(2): 519-542, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33367423

RESUMO

Due to recent lifestyle shifts and health discernments among consumers, synthetic drugs are facing the challenge of controlling disease development and progression. Various medicinal plants and their constituents are recognized for their imminent role in disease management via modulation of biological activities. At present, research scholars have diverted their attention on natural bioactive entities with health-boosting perception to combat the lifestyle-related disarrays. In particular, Zingiber officinale is a medicinal herb that has been commonly used in food and pharmaceutical products. Its detailed chemical composition and high value-added active components have been extensively studied. In this review, we have summarized the pharmacological potential of this well-endowed chemo preventive agent. It was revealed that its functionalities are attributed to several inherent chemical constituents, including 6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 6-hydroshogaol, and oleoresin, which were established through many studies (in vitro, in vivo, and cell lines). In this review, we also focused on the therapeutic effects of ginger and its constituents for their effective antioxidant properties. Their consumption may reduce or delay the progression of related diseases, such as cancer, diabetes, and obesity, via modulation of genetic and metabolic activities. The updated data could elucidate the relationship of the extraction processes with the constituents and biological manifestations. We have collated the current knowledge (including the latest clinical data) about the bioactive compounds and bioactivities of ginger. Their detailed mechanisms, which can lay foundation for their food and medical applications are also discussed.


Assuntos
Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Zingiber officinale/química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Humanos , Síndrome Metabólica/tratamento farmacológico
7.
Food Chem ; 340: 127880, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32877847

RESUMO

We applied oven-roasting on soybean in order to investigate their physicochemical, sensory, and volatile profiles using electronic nose and HS-SPME-GC-MS. Results revealed a temperature dependent kinetic on the physicochemical index except fat content. Roasting at 200 °C for 20 min decreased the protein dispersibility index about 38%; while, lipoxygenase and peroxidase were entirely inactivated. The primary heat sensitive amino acids were methionine, arginine, and cysteine. Electronic nose showed certain capacity to discriminate varying roasted soybeans. Out of 41 volatile compounds identified in soybean headspace, 2,5-dimethylpyrazine showed the highest abundance of 411.18 µg/Kg. Regression model suggested the association of hexanal and aliphatic alcohols with beany flavor, while pyrazines, heterocycles, and furanoids showed a positive correlation with roasted flavor. The selected flavor markers can be used to predict the development of flavor in roasted soybeans. Our study emphasized the effect of roasting level on nutritive value and flavor profiles of soybeans.


Assuntos
Indústria de Processamento de Alimentos/métodos , Glycine max/química , Compostos Orgânicos Voláteis/análise , Adulto , Aldeídos/análise , Aminoácidos/análise , Aminoácidos/química , Cor , Nariz Eletrônico , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Humanos , Masculino , Odorantes/análise , Microextração em Fase Sólida , Paladar
8.
Food Funct ; 11(10): 8424-8443, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33043925

RESUMO

Flavonoids represent polyphenolic plant secondary metabolites with a general structure of a 15-carbon skeleton comprising two phenyl rings and a heterocyclic ring. Over 5000 natural flavonoids (flavanones, flavanonols, and flavans) from various plants have been characterized. Several studies provide novel and promising insights into morin hydrate for its different biological activities against a series of metabolic syndromes. The present review is a rendition of its sources, chemistry, functional potency, and protective effects on metabolic syndromes ranging from cancer to brain injury. Most importantly this systematic review article also highlights the mechanisms of interest to morin-mediated management of metabolic disorders. The key mechanisms (anti-oxidative and anti-inflammatory) responsible for its therapeutic potential are well featured after collating the in vitro and in vivo study reports. As a whole, based on the prevailing information rationalizing its medicinal use, morin can be identified as a therapeutic agent for the expansion of human health.


Assuntos
Flavonoides , Ingredientes de Alimentos , Alimento Funcional , Doenças Metabólicas/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Flavonoides/administração & dosagem , Flavonoides/química , Flavonoides/metabolismo , Flavonoides/farmacologia , Ingredientes de Alimentos/análise , Humanos , Doenças Metabólicas/dietoterapia , Neoplasias/tratamento farmacológico
9.
J Control Release ; 328: 100-111, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32858074

RESUMO

Single reactive oxygen species (ROS)-mediated therapy, photodynamic therapy (PDT) or chemodynamic therapy (CDT) is severely hindered in hypoxic solid tumor. Herein, to address the urgent challenge, a hypoxia-activated ROS burst liposome has been fabricated to achieve synergistic PDT/CDT that is initiated by the structural dissociation of poly(metronidazole) liposome in hypoxic tumor microenvironment (TME). The therapeutic enhancement of our ROS-blasting treatment is simultaneously regulated by external light-initiated PDT and endogenous iron oxide nanoclusters-triggered CDT, which is synergistically boosted and amplified by localized mild hyperthermia under 808/660 nm coirradiation. More importantly, in vitro and in vivo experiments demonstrate that electron-affinic poly(aminoimidazole) product from hypoxia-responsive transition of poly(metronidazole) polymers could efficiently enhance hypoxic cell apoptosis and induce solid tumor ablation. Thus, this work offers a potential hypoxia-activated ROS burst-PDT/CDT strategy with a superior antitumor efficacy, highlighting a promising clinical application.


Assuntos
Lipossomos , Fotoquimioterapia , Linhagem Celular Tumoral , Humanos , Hipertermia , Hipóxia , Espécies Reativas de Oxigênio
10.
Appl Microbiol Biotechnol ; 104(13): 5759-5772, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32388761

RESUMO

The influence of riboflavin (B2)-overproducing lactobacilli on the antioxidant status, isoflavone conversion, off-flavor reduction, amino acid profile, and viscosity of B2-bio-enriched fermented soymilk was investigated. Results showed that B2 in fermented soymilk was notably increased from 0.2 to 3.8 µg/mL for Lactobacillus fermentum UFG169 and to 1.9 µg/mL for Lactobacillus plantarum UFG10. The apparent viscosity significantly changed with rising acidity and agglutination of protein. The off-flavor volatile substances (hexanal and nonanal) were significantly reduced in fermented soymilk. Furthermore, a large amount of glucoside form isoflavones was deglycosylated into bioactive aglycones after 4 h up to 32 h. B2 content and isoflavones significantly improved the antioxidant status of soymilk. Partial least squares regression analysis correlated the strain activity and fermentation time with the improved nutritional and functional soymilk qualities. This study demonstrated the strategy for strain development for B2-bio-enriched fermentation to extend the health-promoting benefits of soymilk and soy-related foods. KEY POINTS: • B2-enriched fermentation enhanced the nutrition and functional status of soymilk. • Fermentation time significantly affected the apparent viscosity of fermented soymilk. • Off-flavor volatile substances were significantly reduced or even diminished. • Increased B2and bioactive isoflavones contributed to improved antioxidant potential.


Assuntos
Alimentos Fermentados/microbiologia , Alimento Funcional/microbiologia , Lactobacillus/metabolismo , Riboflavina/metabolismo , Leite de Soja , Antioxidantes/análise , Antioxidantes/metabolismo , Biotransformação , Contagem de Colônia Microbiana , Fermentação , Alimentos Fermentados/análise , Microbiologia de Alimentos , Alimento Funcional/análise , Concentração de Íons de Hidrogênio , Isoflavonas/análise , Isoflavonas/metabolismo , Lactobacillus/classificação , Lactobacillus/crescimento & desenvolvimento , Viabilidade Microbiana , Viscosidade , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...